KarstBase a bibliography database in karst and cave science.
Featured articles from Cave & Karst Science Journals
Characterization of minothems at Libiola (NW Italy): morphological, mineralogical, and geochemical study, Carbone Cristina; Dinelli Enrico; De Waele Jo
Chemistry and Karst, White, William B.
The karst paradigm: changes, trends and perspectives, Klimchouk, Alexander
Long-term erosion rate measurements in gypsum caves of Sorbas (SE Spain) by the Micro-Erosion Meter method, Sanna, Laura; De Waele, Jo; Calaforra, José Maria; Forti, Paolo
The use of damaged speleothems and in situ fault displacement monitoring to characterise active tectonic structures: an example from Zapadni Cave, Czech Republic , Briestensky, Milos; Stemberk, Josef; Rowberry, Matt D.;
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
VIADUKSTRASSE 40-44, PO BOX 133, CH-4010 BASEL, SWITZERLAND
Eclogae Geologicae Helvetiae, 1999, Vol 92, Issue 1, p. 45-61
A record of multistage continental break-up on the Brianconnais marginal plateau (Western Alps): Early and Middle-Late Jurassic rifting
Claudel Me, Dumont T,
Abstract:
The Brianconnais series in the French Western Alps near Briancon bear evidence of extensional deformation preceding Alpine shortening. Most of these structures have been ascribed to Tethyan rifting processes. However, many of them are younger than the initial opening of the Ligurian Tethys ocean (Late Bajocian-Early Bathonian) and have a different orientation than the syn-rift faults. The combined use of sedimentological, stratigraphic, paleostructural and structural methods allows to distinguish the features related to the Tethyan rifting (Early to early Middle Jurassic) from the younger extensional deformation (Late Jurassic) which in part overprinted them: The Tethyan rifting is marked by a subaerial erosional surface (breakup unconformity), bearing karsts which developed along syn-rift faults. The continental to shallow marine diagenetic inprints are analysed (diagenetic log method). The Tethyan syn-rift uplift occurred as pulses from the early Late Triassic (Champcella type units) to the late Early Liassic (Peyre-Haute unit), whereas Tethyan post-rift drowning was synchronous (Late Bathonian thermal subsidence). We propose that the post-break-up extensional deformation (Late Jurassic) is linked with intracontinental rifting of the Atlantic realm (Bay of Biscay and/or Valais rifts). Therefore, the pre-Alpine deformations recorded in the Brianconnais series may result from the interference between different Mesozoic rifting-spreading cycles. Alpine inversion processes are more complex than previously thought since (1) the pre-Alpine structural grain was made of at least two, nearly perpendicular trends, (2) convergence changed in orientation through time, making it possible to reactivate preferentially either one or the other trend, and (3) significant nappe rotations are expected, which may be considered for palinspastic restoration. This has important paleogeographic implications, i.e. the present-day upper units of the Brianconnais pile are not necessarily derived from more distal parts of the Tethyan margin than the lower ones since they may have suffered important lateral, possibly northward, transport before final outward stacking
The Brianconnais series in the French Western Alps near Briancon bear evidence of extensional deformation preceding Alpine shortening. Most of these structures have been ascribed to Tethyan rifting processes. However, many of them are younger than the initial opening of the Ligurian Tethys ocean (Late Bajocian-Early Bathonian) and have a different orientation than the syn-rift faults. The combined use of sedimentological, stratigraphic, paleostructural and structural methods allows to distinguish the features related to the Tethyan rifting (Early to early Middle Jurassic) from the younger extensional deformation (Late Jurassic) which in part overprinted them: The Tethyan rifting is marked by a subaerial erosional surface (breakup unconformity), bearing karsts which developed along syn-rift faults. The continental to shallow marine diagenetic inprints are analysed (diagenetic log method). The Tethyan syn-rift uplift occurred as pulses from the early Late Triassic (Champcella type units) to the late Early Liassic (Peyre-Haute unit), whereas Tethyan post-rift drowning was synchronous (Late Bathonian thermal subsidence). We propose that the post-break-up extensional deformation (Late Jurassic) is linked with intracontinental rifting of the Atlantic realm (Bay of Biscay and/or Valais rifts). Therefore, the pre-Alpine deformations recorded in the Brianconnais series may result from the interference between different Mesozoic rifting-spreading cycles. Alpine inversion processes are more complex than previously thought since (1) the pre-Alpine structural grain was made of at least two, nearly perpendicular trends, (2) convergence changed in orientation through time, making it possible to reactivate preferentially either one or the other trend, and (3) significant nappe rotations are expected, which may be considered for palinspastic restoration. This has important paleogeographic implications, i.e. the present-day upper units of the Brianconnais pile are not necessarily derived from more distal parts of the Tethyan margin than the lower ones since they may have suffered important lateral, possibly northward, transport before final outward stacking
Keywords: alps, atlantic, basement, bay, brianconnais, central atlantic, complex, continental margins, convergence, cycles, deformation, diagenetic log, evolution, fault, faults, features, france, iberian plate, interference, inversion, jurassic, karst, karsts, ligurian tethys, log, lower penninic nappes, margin, marine, middle, neptunian dykes, ocean, orientation, part, plateau, record, restoration, rift, rift tectonics, series, shallow marine, stacking, structure, subsidence, surface, tethys, tilted blocks, time, times, transport, trends, triassic, unconformities, unconformity, units, uplift, western, western alps,