MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology

Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That injection head is a swivel head connector through which drilling fluid is injected into the drill pipe [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Economic Geology, 2002, Vol 97, Issue 1, p. 1063-1077
Genesis of the Dogankuzu and Mortas Bauxite Deposits, Taurides, Turkey: Separation of Al, Fe, and Mn and Implications for Passive Margin Metallogeny
Abstract:
The Taurides region of Turkey is host to a number of important bauxite, Al-rich laterite, and Mn deposits. The most important bauxite deposits, Do[g]ankuzu and Morta[s], are karst-related, unconformity-type deposits in Upper Cretaceous limestone. The bottom contact of the bauxite ore is undulatory, and bauxite fills depressions and sinkholes in the footwall limestone, whereas its top surface is concordant with the hanging-wall limestone. The thickness of the bauxite varies from 1 to 40 m and consists of bohmite, hematite, pyrite, marcasite, anatase, diaspore, gypsum, kaolinite, and smectite. The strata-bound, sulfide- and sulfate-bearing, low-grade lower part of the bauxite ore bed contains pyrite pseudomorphs after hematite and is deep red in outcrop owing to supergene oxidation. The lower part of the bauxite body contains local intercalations of calcareous conglomerate that formed in fault-controlled depressions and sinkholes. Bauxite ore is overlain by fine-grained Fe sulfide-bearing and calcareous claystone and argillaceous limestone, which are in turn overlain by massive, compact limestone of Santonian age. That 50-m-thick limestone is in turn overlain by well-bedded bioclastic limestone of Campanian or Maastrichtian age, rich with rudist fossils. Fracture fillings in the bauxite orebody are up to 1 m thick and consist of bluish-gray-green pyrite and marcasite (20%) with bohmite, diaspore, and anatase. These sulfide veins crosscut and offset the strata-bound sulfide zones. Sulfur for the sulfides was derived from the bacterial reduction of seawater sulfate, and Fe was derived from alteration of oxides in the bauxite. Iron sulfides do not occur within either the immediately underlying or overlying limestone. The platform limestone and shale that host the bauxite deposits formed at a passive margin of the Tethys Ocean. Extensive vegetation developed on land as the result of a humid climate, thereby creating thick and acidic soils and enhancing the transport of large amounts of organic matter to the ocean. Alteration of the organic matter provided CO2 that contributed to formation of a relatively 12C-rich marine footwall limestone. Relative sea-level fall resulted from strike-slip faulting associated with closure of the ocean and local uplift of the passive margin. That uplift resulted in karstification and bauxite formation in topographic lows, as represented by the Do[g]ankuzu and Morta[s] deposits. During stage 1 of bauxite formation, Al, Fe, Mn, and Ti were mobilized from deeply weathered aluminosilicate parent rock under acidic conditions and accumulated as hydroxides at the limestone surface owing to an increase in pH. During stage 2, Al, Fe, and Ti oxides and clays from the incipient bauxite (bauxitic soil) were transported as detrital phases and accumulated in the fault-controlled depressions and sinkholes. During stage 3, the bauxitic material was concentrated by repeated desilicification, which resulted in the transport of Si and Mn to the ocean through a well-developed karst drainage system. The transported Mn was deposited in offshore muds as Mn carbonates. The sulfides also formed in stage 3 during early diagenesis. Transgression into the foreland basin resulted from shortening of the ocean basin and nappe emplacement during the latest Cretaceous. During that time bioclastic limestone was deposited on the nappe ramp, which overlapped bauxite accumulation