Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_right.php on line 7
KarstBase a bibliography database in karst and cave science.
Featured articles from Cave & Karst Science Journals
Characterization of minothems at Libiola (NW Italy): morphological, mineralogical, and geochemical study, Carbone Cristina; Dinelli Enrico; De Waele Jo
Chemistry and Karst, White, William B.
The karst paradigm: changes, trends and perspectives, Klimchouk, Alexander
Long-term erosion rate measurements in gypsum caves of Sorbas (SE Spain) by the Micro-Erosion Meter method, Sanna, Laura; De Waele, Jo; Calaforra, José Maria; Forti, Paolo
The use of damaged speleothems and in situ fault displacement monitoring to characterise active tectonic structures: an example from Zapadni Cave, Czech Republic , Briestensky, Milos; Stemberk, Josef; Rowberry, Matt D.;
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Economic Geology, 2003, Vol 98, Issue 4, p. 797-818
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Geology of the Beltana Willemite Deposit, Flinders Ranges, South Australia
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Groves Iain M. , Carman Cris E. , Dunlap W. James,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Abstract:
Beltana is a high-grade hypogene willemite deposit hosted in Lower Cambrian carbonate rocks in the Arrowie basin, northern Flinders Ranges, South Australia. It is situated adjacent to a major growth fault on the basin margin. Ooid grainstone units of the Woodendinna Dolomite and units of Archaeocyathid-rich Wilkawillina Limestone are the main host lithologies. Lead minerals in subeconomic quantities are also present in karstic collapse breccias surrounding the willemite orebodies. Mineralization is structurally controlled and associated with brecciation and extensive hematite-rich hydrothermal zincian dolomitization. Ore minerals include willemite and coronadite with lesser mimetite, hedyphane, and smithsonite. Late-stage gangue minerals include manganocalcite, dolomite, and minor quartz. The texture of willemite is heterogeneous, resulting from various depositional mechanisms such as partial to massive replacement of the carbonate host rock, internal sedimentation, fracture fill, brecciation, and vein fill. On the periphery of the deposit, smithsonite formed by weathering of willemite. Beltana is centered on a karstic collapse breccia that extends at least 100 m vertically, formed in part through corrosion by acidic ore solutions. The geochemical signature of the orebody includes high levels of Zn, Pb, Cd, As, and Mn. Notably, silver is absent from the deposit and sulfur concentrations are low (
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Keywords: age, australia, basin, breccia, breccias, carbonate, carbonate rock, carbonate rocks, cd, collapse, collapse breccias, dating, deposit, deposition, deposits, dolomite, dolomitization, fault, fluid, fluid inclusion, fluid-inclusion, fracture, geology, growth, host, hydrothermal, lead, level, limestone, lithology, ma, margin, mechanism, mechanisms, mineralization, minerals, mississippi valley-type, mississippi valley-type deposits, mn, ore deposition, part, quartz, range, replacement, rock, rocks, sedimentation, silver, solution, south, south australia, south-australia, sulfur, temperature, texture, units, vein, weathering, willemite, yield, zn,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943