Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That field survey is measurements taken in the field [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Economic Geology, 2003, Vol 98, Issue 4, p. 685-714
Classification, Genesis, and Exploration Guides for Nonsulfide Zinc Deposits
Abstract:
Nonsulfide zinc deposits, popularly but incorrectly termed 'zinc oxide' deposits, are becoming attractive exploration targets owing to new developments in hydrometallurgy. They are divided into two major geologic types--supergene and hypogene deposits. Supergene deposits are the most common type of nonsulfide zinc deposit and are distributed worldwide. The vast majority occur in carbonate host rocks owing to the high reactivity of carbonate minerals with the acidic, oxidized, zinc-rich fluids derived from the oxidative destruction of sphalerite-bearing sulfide bodies. Formation of these deposits depends upon the size and mineralogy of the preexisting zinc occurrence, vertical displacement of the water table, rate of water table descent through tectonic uplift and/or arid climatic conditions, wall-rock fracture density, and a suitable neutralizing trap site. Weathering of Mississippi Valley-type and high-temperature carbonate replacement-type zinc deposits may generate significant supergene nonsulfide zinc deposits, but the weathering of pyrite-rich, sedimentary exhalative, and volcanogenic massive sulfide deposits is much less likely to form economic supergene zinc deposits. Three subtypes of supergene nonsulfide zinc deposits are recognized--direct replacement, wall-rock replacement, and residual and karst-fill deposits. Hypogene nonsulfide zinc deposits are more poorly known owing to the paucity of examples; however, two major subtypes are recognized: structurally controlled, replacement bodies and manganese-rich, exhalative(?) stratiform bodies. The structurally controlled bodies contain willemite and variable amounts of sphalerite, are hematitic, and are generally associated with hydrothermal dolomitization. Stratiform, manganese-rich, nonsulfide zinc deposits appear to be end members of a spectrum of deposits that include base metal-poor stratiform manganese deposits and sulfide-dominant Broken Hill-type deposits. Hypogene nonsulfide zinc deposits appear to have formed owing to the mixing of a reduced, low- to moderate-temperature (80{degrees}-200{degrees}C), zinc-rich, sulfur-poor fluid with an oxidized, sulfur-poor fluid