KarstBase a bibliography database in karst and cave science.
Featured articles from Cave & Karst Science Journals
Characterization of minothems at Libiola (NW Italy): morphological, mineralogical, and geochemical study, Carbone Cristina; Dinelli Enrico; De Waele Jo
Chemistry and Karst, White, William B.
The karst paradigm: changes, trends and perspectives, Klimchouk, Alexander
Long-term erosion rate measurements in gypsum caves of Sorbas (SE Spain) by the Micro-Erosion Meter method, Sanna, Laura; De Waele, Jo; Calaforra, José Maria; Forti, Paolo
The use of damaged speleothems and in situ fault displacement monitoring to characterise active tectonic structures: an example from Zapadni Cave, Czech Republic , Briestensky, Milos; Stemberk, Josef; Rowberry, Matt D.;
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
175 FIFTH AVE, NEW YORK, NY 10010 USA
Environmental Geology, 1999, Vol 39, Issue 2, p. 165-176
Water vulnerability assessment in karst environments: a new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method)
Doerfliger N, Jeannin Py, Zwahlen F,
Abstract:
Groundwater resources from karst aquifers play a major role in the water supply in karst areas in the world, such as in Switzerland. Defining groundwater protection zones in karst environment is frequently not founded on a solid hydrogeological basis. Protection zones are often inadequate and as a result they may be ineffective. In order to improve this situation, the Federal Office for Environment, Forests and Landscape with the Swiss National Hydrological and Geological Survey contracted the Centre of Hydrogeology of the Neuchatel University to develop a new groundwater protection-zones strategy in karst environment. This approach is based on the vulnerability mapping of the catchment areas of water supplies provided by springs or boreholes. Vulnerability is here defined as the intrinsic geological and hydrogeological characteristics which determine the sensitivity of groundwater to contamination by human activities. The EPIK method is a multi-attribute method for vulnerability mapping which takes into consideration the specific hydrogeological behaviour of karst aquifers. EPIK is based on a conceptual model of karst hydrological systems, which suggests considering four karst aquifer attributes: (1) Epikarst, (2) Protective cover, (3) Infiltration conditions and (4) Karst network development. Each of these four attributes is subdivided into classes which are mapped over the whole water catchment. The attributes and their classes are then weighted. Attribute maps are overlain in order to obtain a final vulnerability map. From the vulnerability map, the groundwater protection zones are defined precisely. This method was applied at several sites in Switzerland where agriculture contamination problems have frequently occurred. These applications resulted in recommend new boundaries for the karst water supplies protection-zones
Groundwater resources from karst aquifers play a major role in the water supply in karst areas in the world, such as in Switzerland. Defining groundwater protection zones in karst environment is frequently not founded on a solid hydrogeological basis. Protection zones are often inadequate and as a result they may be ineffective. In order to improve this situation, the Federal Office for Environment, Forests and Landscape with the Swiss National Hydrological and Geological Survey contracted the Centre of Hydrogeology of the Neuchatel University to develop a new groundwater protection-zones strategy in karst environment. This approach is based on the vulnerability mapping of the catchment areas of water supplies provided by springs or boreholes. Vulnerability is here defined as the intrinsic geological and hydrogeological characteristics which determine the sensitivity of groundwater to contamination by human activities. The EPIK method is a multi-attribute method for vulnerability mapping which takes into consideration the specific hydrogeological behaviour of karst aquifers. EPIK is based on a conceptual model of karst hydrological systems, which suggests considering four karst aquifer attributes: (1) Epikarst, (2) Protective cover, (3) Infiltration conditions and (4) Karst network development. Each of these four attributes is subdivided into classes which are mapped over the whole water catchment. The attributes and their classes are then weighted. Attribute maps are overlain in order to obtain a final vulnerability map. From the vulnerability map, the groundwater protection zones are defined precisely. This method was applied at several sites in Switzerland where agriculture contamination problems have frequently occurred. These applications resulted in recommend new boundaries for the karst water supplies protection-zones
Keywords: activity, agriculture, aquifer, aquifer protection, aquifers, area, areas, assessment, catchment, catchment area, conceptual model, conceptual-model, contamination, environment, environments, epikarst, forest, forests, france, gis, groundwater, groundwater protection, groundwater resource, human activity, hydrogeology, hydrological systems, infiltration, karst, karst aquifer, karst aquifers, karst area, karst areas, karst environment, karst water, landscape, mapping, model, protection, protection zone, sensitivity, site, sites, spring, springs, strategies, supplies, switzerland, system, systems, time, times, tools, vulnerability, vulnerability assessment, water, world, zone, zones,