MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology

Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That prusik knot is a knot tied by looping a smaller diameter rope around a larger standing line (rope) that has the property of sliding with no load on the knot, but will hold when it is loaded (e.g. when the weight of a caver is applied) [13]. see also ascender; mechanical ascender; prusiking; standing line.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

GSA Bulletin, 2000, Vol 112, Issue 5, p. 1864-1876
Determination of escarpment age using morphologic analysis: An example from the Galilee, northern Israel
Abstract:
We used topographic and structural data and very limited age control to perform quantitative morphometric analyses and to determine relative ages of escarpments bounded by late Cenozoic normal faults in the Galilee, Israel. The Galilee is an extensional zone composed of a series of uplifted and tilted blocks forming large escarpments built mainly of carbonate rocks. Two parameters used to discriminate tectonic stages are the ratio between the height of the escarpment and the total stratigraphic displacement (L) and the degree of concavity of escarpment slopes relative to a reference slope. The only dated reference slope is Mount Tur'an, [~]300 m high and formed by the Tur'an fault system, which has a total stratigraphic displacement of 625 m. A basalt flow that delimits the age of the Tur'an escarpment is dated to 4.23 {} 0.23 Ma and displaced 300 m, which is identical to the present-day topographic expression of this escarpment. The L value for this escarpment is [~]0.5. The Tur'an fault system was active prior to 4.23 Ma at slow uplift rates that enabled erosion to maintain the gentle slope over which the basalt flowed. Increased offset rates following the basalt extrusion led to the formation of the escarpment. The preservation of the basalt at the top of the escarpment indicates that erosional lowering of the upper surface of the Tur'an block has been minor since its formation. The L values indicate two stages of uplift; an early stage during which offset rates were probably low enough that they did not form topography, and a later stage that formed topography, which is preserved. The timing of the change in displacement rates from a slow continuous stage to a fast, topography-forming stage was determined by comparing the shape of the dated slope of Tur'an to that of other slopes. We conclude the following: (1) generally, the topographic profiles of different parts of each individual escarpment have similar shapes indicating similar ages; (2) escarpments having slopes that are more concave or convex than the reference Tur'an escarpment are older or younger than 4 Ma, respectively; and (3) the Galilee escarpments did not form simultaneously. A few escarpments were already major morphologic features by the early to middle Pliocene, whereas the rest formed during the late Pliocene. Morphometric analysis is a useful method for studying the geologic history of a landscape controlled by normal fault uplift and characterized by the absence of sediment deposition and where carbonate dissolution is the main erosional process. This and similar approaches can be used to discriminate tectonic stages and understand the relationship between tectonic activity and surface processes in other extensional regions