MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology

Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That underground divide is subsurface watershed between two catchment areas in karst; often with incongruent with the surface topography of the area [20]. synonyms: (french.) ligne de partage des eaux souterraines, limit souterrainne; (german.) unterirdische waberscheide; (greek.) ypoghios ythroketis; (italian.) spartiacque sotterraneo; (russian.) vodorazdel podzemnyh vod; (spanish.) divisoria subterranea; (turkish.) yeraltisu bolumu; (yugoslavian.) podzemna razvodnica, podzemna vododelnica. see also subsurface divide.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

The Holocene, 2004, Vol 14, Issue 0, p. 7-19
A Late-glacial and Holocene record of climatic change from a Swiss peat humification profile
Abstract:
Colorimetric measurements of alkaline extracts from two Swiss peat cores have provided a complete 14500-year-long record of peat humification, a proxy of effective precipitation. Peat from the cold Younger Dryas (11050-9550 cal. bc) was well preserved despite low levels of precipitation. A particularly dry period, peaking at c. 7100 cal. bc, is indicated by well-decomposed peat. Peat from c. 6750-4250 cal. bc shows a low degree of decomposition, indicating a wet bog surface despite relatively warm temperatures and therefore indicating high levels of precipitation. A sharp transition to higher levels of decomposition c. 4450-3750 cal. bc indicates a major transition to a drier bog surface. Subsequently, peat humification generally decreases towards the end of the deeper profile (c. cal. ad 1050), indicating a gradual return to wetter conditions. This gradual decrease is punctuated by periods of particularly low humification which appear to be due to shifts to higher levels of effective precipitation from c. 2500 to 1350 cal. bc, c. 1050 to 550 cal. bc, centered around 150 cal. bc, and from c. cal. ad 550 onwards. Anthropogenic influences appear to have affected peat humification at the site at least since the Middle Ages. This study indicates that humification in colder regions/time periods could be more affected by temperature than precipitation and vice versa