Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That whaletail is a descender consisting of an aluminium block with slots, knobs and a safety gate [25].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for aerosol (Keyword) returned 25 results for the whole karstbase:
Showing 1 to 15 of 25
VOID-FILLING DEPOSITS IN KARST TERRAINS OF ISOLATED OCEANIC ISLANDS - A CASE-STUDY FROM TERTIARY CARBONATES OF THE CAYMAN-ISLANDS, 1992, Jones B. ,
Caves, fossil mouldic cavities, sinkholes and solution-widened joints are common in the Cayman and Pedro Castle members of the Bluff Formation (Oligocene Miocene) on Grand Cayman and Cayman Brac because they have been subjected to repeated periods of karst development over the last 30 million years. Many voids contain a diverse array of sediments and/or precipitates derived from marine or terrestrial environs, mineral aerosols, and groundwater. Exogenic sediment was transported to the cavities by oceanic storm waves, transgressive seas, runoff following tropical rain storms and/or in groundwater. At least three periods of deposition were responsible for the occlusion of voids in the Cayman and Pedro Castle members. Voids in the Cayman Member were initially filled or partly filled during the Late Oligocene and Early Miocene. This was terminated with the deposition of the Pedro Castle Member in the Middle Miocene. Subsequent exposure led to further karst development and void-filling sedimentation in both the Cayman and Pedro Castle members. Speleothems are notably absent. The void-filling deposits formed during these two periods, which were predominantly marine in origin, were pervasively dolomitized along with the host rock 2 5 million years ago. The third period of void-filling deposition. after dolomitization of the Bluff Formation, produced limestone, various types of breccia, terra rossa, speleothemic calcite and terrestrial oncoids. Most of these deposits formed since the Sangamon highstand 125 000 years ago. Voids in the present day karst are commonly filled or partly filled with unconsolidated sediments. Study of the Bluff Formation of Grand Cayman and Cayman Brac shows that karst terrains on isolated oceanic islands are characterized by complex successions of void-filling deposits that include speleothems and a variety of sediment types. The heterogenetic nature of these void-filling deposits is related to changes in sea level and climatic conditions through time

Speleothems of Aerosol Origin, 1995, Klimchouk Alexander B. , Nasedkin Vladimir M. , Cunningham Kimberley I.

Speleothems of Aerosol Origin: Reply, 1996, Klimchouck, A. B. , Nasedkin, V. M. , Cunningham, K. .
Ten new species of the genus Arrhopalites are described from caves in Oklahoma, Virginia, and Texas. A system for labeling the circumanal setae is presented, following the scheme of Lawrence (1979).

Generation of Cave Aerosols by Alpha Particles: Critical Evaluation of the Hypothesis, 1997, Pashenko, S. E. , Dublyansky, Y. V.
The paper evaluates the feasibility of the hypothetical mechanism of cave aerosols generation under the action of natural radioactivity. Analysis has been performed from the standpoints of nuclear physics and aerosol mechanics. The hypothetical mechanism involves dislodgment of atoms and ions and knocking-out of larger fragments due to the bombardment of the bedrock by alpha-particles residing in the cave air. Calculations show that the largest amount of atoms and ions that could be generated by alpha-bombardment does not exceed 0.1 g from 1000 m2 of the cave surface per 1 million years a quite negligible value. Presence of any water film thicker than 0.1 micron on the cave wall would completely prevent the dislodgment. The hypothetical mechanism, though physically plausible, cannot play any essential role in the generation of cave aerosols, and much less in the formation of speleothems.

Geochemistry and water dynamics: Application to short time-scale flood phenomena in a small Mediterranean catchment .1. Alkalis, alkali-earths and Sr isotopes, 1997, Benothman D, Luck Jm, Tournoud Mg,
We report major, trace elements and Sr isotope data for water samples taken regularly during a four-day-long September flood of a Mediterranean river, the Vene (Herault, S. France). The objective is to combine all these data into a dynamic model that describes the origin(s) and movements of waters and their loads. This river drains the runoff from a small, mainly carbonate, partly karstified watershed with Miocene and Jurassic lithologies. The watershed is also impacted by both agricultural and urban activities. Both the dissolved and the particulate loads were analyzed. Concentrations of the dissolved components show major remobilization of almost all elements during the first few hours of the flood (water treatment plants and aerosol scavenging), followed by a sharp concentration decrease. Some major species return to their previous summer values (Ca, HCO3) while others reach low 'background' levels (Na, K, Cl, SO4). Some trace elements (Rb, Sr, Cs) show similar behaviour but (Ba) appears somewhat unaffected. Trace element concentrations and ratios define two main periods (three in the suspended particulate matter). Ratios do not allow distinguishing between the three main sources for the dissolved load in the first period (Miocene, Jurassic, water treatment plants), but clearly show the Jurassic karst influence later on. The Sr-87/Sr-86 Of the suspended particulate matter is more variable and more radiogenic than in the dissolved phase. Variations in concentration ratios and Sr isotope composition in particulates indicate the large and variable contribution of Miocene silicates with some carbonate. However, there is a need for another component with [Rb]/[Sr] higher than bedrocks, internal or external to the watershed, possibly due to differential erosion. Dissolved Ca and Mg fluxes during the flood were calculated at 0.26 ton and 0.029 ton/km(2), respectively. Even though the carbonate nature of the watershed restricts variability in Sr isotope composition in the dissolved load, we distinguish several endmembers: seawater(approximate to marine rain), Miocene marls, Jurassic limestones, water treatment plants (and possibly another attributable to fertilizers). Combined with major and trace element variational Sr isotope fluctuations indicate time-varying proportions of different water endmembers at the outflow and suggest a general dynamic model. Based on PCA (principal component analysis), a 3D representation allows to visualize the geochemical evolution of the Vene waters. In particular, Sr isotopes clearly indicate that the inflow of karstic waters during the flood was not continuous but occurred as a series of marked oscillations between flowing waters with chemical signature of Miocene lithologies and increasing flushes of deeper waters that interacted with Jurassic lithologies. (C) 1997 Elsevier Science B.V

Cave popcorn - an aerosol speleothem?, 1997, Dublyansky Y. V. , Pashenko A. E.

The Problem of Condensation in Karst Studies, 1998, Dublyansky, V. N.
Condensation in karst occurs over a wide range of natural settings, at latitudes from 25 to 70 and altitudes from sea level to 2600 m. In summer (April through September), condensation introduces a significant amount of water into the karst massifs (from 0.1% to as much as 20% of the total dry-season runoff). Contrary to common belief, in winter evaporation does not withdraw appreciable amounts of water from the massifs. Evaporating at depth, the water condenses near the surface within the epikarstic zone or on the snow cover and flows back. Condensation can sustain springs during prolonged dry periods (such as summer and winter) when there is no recharge by liquid precipitation. Condensation can play a significant role in speleogenesis, and many forms of cave macro-, meso-, and micromorphologies are attributable to condensation corrosion. It can be particularly efficient in the latter stages of hydrothermal cave development (during partial dewatering) when the temperature and the humidity gradients are highest. Coupled with evaporation, air convection, and aerosol mass transfer, condensation can play a crucial role in the formation of a number of speleothems, as well as create peculiar patterns of cave microclimate.

Mapping Chicxulub crater structure with gravity and seismic reflection data, 1998, Hildebrand A. R. , Pilkington M. , Ortizaleman C. , Chavez R. E. , Urrutiafucugauchi J. , Connors M. , Granielcastro E. , Camarazi A. , Halpenny J. F. , Niehaus D. ,
Aside from its significance in establishing the impact-mass extinction paradigm, the Chicxulub crater will probably come to exemplify the structure of large complex craters. Much of Chicxulub's structure may be mapped' by tying its gravity expression to seismic-reflection profiles revealing an [~]180 km diameter for the now-buried crater. The distribution of karst topography aids in outlining the peripheral crater structure as also revealed by the horizontal gradient of the gravity anomaly. The fracturing inferred to control groundwater flow is apparently related to subsidence of the crater fill. Modelling the crater's gravity expression based on a schematic structural model reveals that the crater fill is also responsible for the majority of the negative anomaly. The crater's melt sheet and central structural uplift are the other significant contributors to its gravity expression. The Chicxulub impact released [~]1.2 x 1031 ergs based on the observed collapsed disruption cavity of [~]86 km diameter reconstructed to an apparent disruption cavity (Dad) of [~]94 km diameter (equivalent to the excavation cavity) and an apparent transient cavity (Dat) of [~]80 km diameter. This impact energy, together with the observed [~]2 x 1011 g global Ir fluence in the Cretaceous-Tertiary (K-T) fireball layer indicates that the impactor was a comet estimated as massing [~]1.8 x 1018 g of [~]16.5 km diameter assuming a 0.6 gcm-3 density. Dust-induced darkness and cold, wind, giant waves, thermal pulses from the impact fireball and re-entering ejecta, acid rain, ozone-layer depletion, cooling from stratospheric aerosols, H2O greenhouse, CO2 greenhouse, poisons and mutagens, and oscillatory climate have been proposed as deleterious environmental effects of the Chicxulub impact with durations ranging from a few minutes to a million years. This succession of effects defines a temperature curve that is characteristic of large impacts. Although some patterns may be recognized in the K-T extinctions, and the survivorship rules changed across the boundary, relating specific environmental effects to species' extinctions is not yet possible. Geochemical records across the boundary support the occurrence a prompt thermal pulse, acid rain and a [~]5000 year-long greenhouse. The period of extinctions seems to extend into the earliest Tertiary

Controls on trace element (Sr-Mg) compositions of carbonate cave waters: implications for speleothem climatic records, 2000, Fairchild Ij, Borsato A, Tooth Af, Frisia S, Hawkesworth Cj, Huang Ym, Mcdermott F, Spiro B,
At two caves (Clamouse, S France and Ernesto, NE Italy), cave drip and pool waters were collected and sampled at intervals over a 2-3 year period. Mg/Ca and Sr/Ca concentration ratios, corrected for marine aerosols, are compared with those of bedrocks and, in some cases, aqueous leachates of soils and weathered bedrocks. Cave waters do not lie along mixing lines between calcite and dolomite of bedrock carbonate, but typically show enhanced and covarying Mg/Ca and Sr/Ca. Four factors are considered as controlling processes. (1) The much faster dissolution rate of calcite than dolomite allows for the possibility of increase of Mg/Ca if water-rock contact times are increased during drier conditions. A theoretical model is shown to be comparable to experimental leachates. (2) Prior calcite precipitation along a flow path is a powerful mechanism for generating enhanced and covarying Mg/Ca and Sr/Ca ratios. This mechanism requires the solution to lose CO, into pores or caverns. (3) Incongruent dolomite dissolution has only limited potential and is best regarded as two separate processes of dolomite dissolution and calcite precipitation. (4) selective leaching of Mg and Sr with respect to Ca is shown to be important in leachates from Ernesto where it appears to be a phenomenon of calcite dissolution. In general selective leaching can occur whenever Ca is sequestered into precipitates due to freezing or drying of soils, or if there is derivation of excess Sr and Mg from non-carbonate species. The Ernesto cave has abundant water supply which in the main chamber is derived from a reservoir with year-round constant P-CO2 of around 10(-2.4) and no evidence of calcite precipitation in the karst above the cave. Two distinct, bur overlying trends of enhanced and covarying Mg/Ca and Sr/Ca away from the locus of bedrock compositions are due to calcite precipitation within the cave and, at a variable drip site, due to enhanced selective leaching at slow drip rates. Mg-enhancement in the first chamber is due to a more dolomitic bedrock and longer residence times. The Clamouse site has a less abundant water supply and presents geochemical evidence of prior calcite precipitation. both in the cave and in overlying porous dolomite/dedolomitized limestone bedrock. Initial P-CO2 values as high as 10(-1) are inferred. Experimental incubations of Clamouse soils which generated enhanced P-CO2 and precipitated CaCO3 had compositions similar to the karst waters. Calcite precipitation is inferred to he enhanced in drier conditions. Hydrological controls on cave water chemistry imply that the trace element chemistry of speleothems may be interpretable in palaeohydrological terms. Drier conditions tends to promote not only longer mean residence times (enhancing dolomite dissolution and hence Mg/Ca), but also enhances degassing and calcite precipitation leading to increased Mg/Ca and Sr/Ca. (C) 2000 Elsevier Science B.V. All rights reserved

The role of condensation in karst hydrogeology and speleogenesis, 2000, Dublyansky V. N. , Dublyansky Y. V.
Condensation in karst occurs over a wide range of natural settings, at latitudes from 25 to 70o and altitudes from sea level to 2600 m. In summer (April through September), condensation introduces a significant amount of water into the karst massifs (from 0.1 % to as much as 20 % of the total dry-season runoff). Contrary to common belief, in winter evaporation does not withdraw appreciable amounts of water from the massifs. Evaporating at depth, the water condenses near the surface within the epikarstic zone or on the snow cover and flows back. Condensation can sustain springs during prolonged dry periods (such as summer and winter) when there is no recharge by liquid precipitation. Condensation can play a significant role in speleogenesis, and many forms of cave macro-, meso-, and micromorphologies are attributable to condensation corrosion. It can be particularly efficient in the latter stages of hydrothermal cave development (during partial dewatering) when the temperature and the humidity gradients are highest. Coupled with evaporation, air convection, and aerosol mass transfer, condensation can play a crucial role in the formation of a number of speleothems, as well as create peculiar patterns of cave microclimate.

Controls on the geochemistry of speleothem-forming karstic drip waters, PhD thesis, 2000, Tooth, A.

Research was performed at Crag Cave, Castleisland, southwest Ireland, and P8 Cave, Castleton, Derbyshire, in order to determine the main factors responsible for modifying rainwater geochemistry during flow through soil and karstic aquifer zones. Monitoring was performed on a daily basis in summer and winter at Crag Cave, and on a monthly basis over one year at P8 Cave. At both sites, biannual peaks in karst system Ca2+ concentrations occurred due to: (i) promotion of microbial CO2 production by increased summer temperatures, and (ii) retardation of gaseous exchange by ponding of elevated winter rainfall input leading to an unseasonable build up in soil zone CO2. Therefore, speleothems at both sites may form biannual bands in hydrological years subject to elevated winter rainfall input.

In addition to variations in carbonate weathering due to fluctuations in CO2 levels, cation yields in Crag Cave matrix soil water were controlled by dolomite dissolution (Mg2+), plant uptake (K+), and evapotranspiration balanced by enhanced winter marine aerosol input (Na+). Strontium isotope analysis indicates that Sr2+ was derived from a 50:50 silicate/carbonate mixture, whereas the relatively light ?13C signal was related to direct evolution of CO2 into the aqueous phase in water-logged pores.

Within the Crag Cave aquifer variations in karst water geochemistry were controlled by dilution, flow switching, prior precipitation of calcite, and dolomite dissolution along the flow path. Strontium isotope analysis indicates that dissolution in the aquifer dominated, with Sr2+ being sourced from a 25:75 silicate/carbonate mixture. Light karst water 13C values were constrained by the supply of light soil gas to the aquifer.

Elevation in the Mg/Ca and Sr/Ca ratios in the Crag Cave speleothem record compared to present day analogues indicates that the former Holocene climate was drier, whereas heavier 87Sr/86Sr ratios and 13C values suggest variation in soil hydrology over time.


EPMA and XRF characterization of therapeutic cave aerosol particles and their deposition in the respiratory system, 2002, Alfoldy B, Torok S, Balashazy I, Hofmann W, Winklerheil R,
Cave therapy is an efficient therapeutic method to cure asthma, but the exact healing effect has not yet been clarified. This study was motivated by the basic assumption that aerosols may play a key role in cave therapy. Aerosol particles were collected in a therapeutic cave in Budapest, Hungary (Szemlohegyi cave) at different locations arranged for the therapeutic treatment. Samples were further analysed by EPMA and XRF for chemical composition and morphology, determining the particle number distribution and classifying them according to their elemental composition. Three particle classes were determined based on major element concentrations: aluminosilicate, quartz and calcium carbonate. The combination of single-particle EPMA and XRF resulted in relevant chemical information that could be used further for lung deposition modelling, namely the diameter and the number distribution to calculate the deposition probability, and the concentration of the element within a particle class necessary for the estimation of the deposited dose. The final results for the health effect study are the deposition efficiencies and deposition patterns of inhaled cave aerosols. The results of the stochastic deposition model showed that roughly 41% of the inhaled particles are deposited in the lung. From this amount, around 39% are deposited within airway generations 6-15, which is the most infected area in an asthmatic lung. The explanation of the healing effects might be based on the presented dose calculations. Copyright (C) 2002 John Wiley Sons, Ltd

Black carbon pollution of speleothems by fine urban aerosols in tourist caves, 2003, Jeong Gi Young, Kim Soo Jin, Chang Sae Jung,
Speleothems in the karst caves of South Korea, which receive many visitors, are losing their aesthetic appeal due to black coloring. Mineralogical, textural, and chemical analyses were conducted on the speleothems to discover the cause of the discoloration. An abrupt color change from the natural color seen in the inner zones to the black color of the outer zones suggests that pollution commenced just after the opening of caves to visitors, and has continued since then. The main mineral compositions of both the outer black and the inner layers are the same, but the concentration of non-carbonate carbon is much higher in the black layers than in the inner layers. Electron microscopy showed that chain-like agglomerates (ca. 0.2-1.1 {micro}m diameter) of sub-micrometer carbon spheres (ca. 0.02-0.05 {micro}m diameter) are absent from the inner layer but present in the black layer, as well as in the cave aerosol. On the basis of their sub-micrometer size, agglomeration pattern, and composition, the carbon spheres and their agglomerates are considered to originate mostly from automobile exhaust. They are presumed to have been carried into the caves by visitors from urban environments and then deposited on the surface of growing speleothems. Protection of speleothems from discoloration requires control of these fine anthropogenic aerosols

The role of condensation-corrosion in thermal speleogenesis: Study of a hypogenic sulfidic cave in Aix-les-Bains, France, 2007, Audra P. , Hoblea F. , Bigot J. Y. , Nobecourt J. C.

Condensation-corrosion is an active speleogenetical process in thermal caves where high thermal gradient drives air convection. Wall retreat rates are greater than in meteoric caves. Conversely, evaporation produces depositional processes by replacement of limestone by gypsum and by aerosol decantation leading to the formation of popcorns. The Chevalley Aven belongs to Aix-les-Bains thermal-sulfidic cave system. Condensation occurs at the contact of cool walls of large spheres; conversely, evaporation occurs at the output of the narrow passages where the air sinks down from the upper sphere. A weathered layer and biofilms are present where slow condensation occurs. Corrosion distribution varies according to thermal rock conductivity and causes the sphere to develop upwards, laterally, and divergent. This mor­phodynamic pattern favors the development of stacked spheres, isolated by narrow necks, and arranged in a bush-like pattern. This development is clearly active in the vadose zone above the thermal water table. We propose that some avens above wa­ter table hypogenic caves, like Villa Luz (Mexico), may be of condensation-corrosion origin instead of phreatic. Future de­velopment will collect physical and chemical data to calculate the condensation-corrosion budget and assess its role in cave development.


Cryomineral formations of caves: introduction into problem, 2008, Andrejchuk V. N. , Galuskin E.

The caves with underground glaciations (multi-year or seasonal) represent by themselves one of the most interesting and distinct environments of cryominaragenesis. The main prerequisite of its broad occurence in caves is the elevated content of dissolved solids in cave water especially in the case of karst caves. Speleomineragenesis is a crystallization of the matter (formation of minerals) due to frosting of water solutions circulated in caves. The quantity and character of cryomineral components in cave ice depends first of all on lithological environment. In limestone caves different phases of calcite dominate, while in gypsum caves – gypsum, celestine, calcite and barite are typical. The admixtures are represented by allochthonic (mainly aerosols) and autochthonic particles. Cryomineral formations have a special (typical for them) micro-morphology allowing their identification. Cryomineral investigations are a new and interesting direction of cave mineralogy studies. There are also important for different reconstructions of cave environment, studying of chemical denudation etc.


Results 1 to 15 of 25
You probably didn't submit anything to search for