Hello everyone!
I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")
There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found:
Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum
The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...
Did you know?
That molecular diffusion (diffusion) is the process whereby solutes are transported at the microscopic level due to variations in the solute concentrations within the fluid phases [22]. the kinetic energy generated by the transport of ionic or molecular constituents results in some dispersion of a chemical.?
In Grotte de Clamouse (France), aragonite forms in a variety of crystal habits whose properties reflect the conditions of formation. Prolonged degassing and evaporation yield needle aragonite, which is more enriched in 18O and 13C than aragonite ray crystals, which form near isotopic equilibrium. At present, aragonite ray crystals form at the tops of stalagmites at very low discharge (0.00035 ml/ min), and when fluid Mg/Ca ratio is > 1.1. Temperature and evaporation do not seem to have a significant role in their formation. The presence of aragonite in stalagmites should be indicative of a decrease in drip rate related to either dry climate conditions or local hydrology. Fossil aragonite was in part replaced by calcite in a time frame < 1.0 ka, possibly through the combined effects of dissolution of aragonite, and precipitation of calcite, which preferentially nucleated on calcite cements that had previously formed between aragonite rays. Commonly, the replacement phase inherited the textural and chemical characteristics of the precursor aragonite prisms and needles (and in particular the {delta}13C signal and U content), and preserved aragonite relicts (up to 16 weight %). The isotope signal of different aragonite habits may reflect conditions of formation rather than climate parameters. The real extent of aragonite-to-calcite transformation may be underestimated when replacement calcite inherits both textural and chemical properties of the precursor
A drapery speleothem (DRA-1) from Castañar Cave in Spain was subjected to a detailed petrographical study in order to identify its primary and diagenetic features. The drapery’s present day characteristics are the result of the combined effects of the primary and diagenetic processes that DRA-1 underwent. Its primary minerals are calcite, aragonite and huntite. Calcite is the main constituent of the speleothem, whereas aragonite forms as frostwork over the calcite. Huntite is the main mineral of moonmilk which covers the tips of aragonite. These primary minerals have undergone a set of diagenetic processes, which include: 1) partial dissolution or corrosion that produces the formation of powdery matt-white coatings on the surface of the speleothem. These are seen under the microscope as dark and highly porous microcrystalline aggregates; 2) total dissolution produces pores of few cm2 in size; 3) calcitization and dolomitization of aragonite result in the thickening and lost of shine of the aragonite fibres. Microscopically, calcitization is seen as rhombohedral crystals which cover and replace aragonite forming mosaics that preserve relics of aragonite precursor. Dolomitization results in the formation of microcrystalline rounded aggregates over aragonite fibres. These aggregates are formed by dolomite crystals of around 1 μm size. The sequence of diagenetic processes follows two main pathways. Pathway 1 is driven by the increase of saturation degree and Mg/Ca ratio of the karstic waters and is visible in the NW side of the drapery. This sequence of processes includes: 1) aragonite and huntite primary precipitation and 2) dolomitization. Pathway 2 is driven by a decrease in the degree of saturation of calcite and aragonite and Mg/Ca ratio of the cave waters, and it is observed in the SE side of the drapery. The diagenetic processes of the second pathway include: 1) calcitization of aragonite; 2) incomplete dissolution (micritization) of both aragonite and calcite; 3) total dissolution. This study highlights the importance of diagenetic processes on speleothems and their complexity. The correct interpretation of these processes is crucial for the understanding of possible changes in the chemistry of waters, temperature, or pCO2 and so is critical to the correct interpretation of the paleoenvironmental significance of speleothems.