MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_left.php on line 5
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That DNAPL is abbreviation for dense nonaqueous phase liquid. liquids falling into this category have specific gravities greater than water (the specific gravity for water is usually taken to be one), are relatively immiscible with water, and tend to migrate downwards through the vadose and phreatic zones in a relatively unimpeded manner. see also lnapl; immiscible; napl.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_right.php on line 7
What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for biotope (Keyword) returned 34 results for the whole karstbase:
Showing 1 to 15 of 34
Diversity and dynamics of microarthropods from different biotopes of Las Sardinas cave (Mexico) , ,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Jos Palaciosvargas, Gabriela Castaomeneses, Daniel A. Estrada

An ecological study of the microarthropod communities from Las Sardinas cave was undertaken. Four different biotopes were studied over the course of a year: bat guano, litter, soil under the chemoautotrophic bacteria colonies and as a control, plain soil without litter or guano. A total of 27,913 specimens of a total of 169 species were collected. Analysis of Variance (ANOVA) showed that there is a significant effect of biotope on the recorded density, and the post hoc Tukey’s test showed that guano is the most different biotope with the highest value of density recorded. The interaction between season and biotope variables was not significant. In the most extreme case, 99 percent of the microarthropods in soil under chemoautotrophic bacteria were mites, mainly in the family Histiostomidae.


Ecology of Fonticola notadena de Beauchamp (Turbellaria, Triclade) in the La Balme cave (Isre, France); suvival in a dry period., 1964,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Ginet Rene, Puglisi Rodolphe
During many months a year the acquatic Planaria (F. notadena) living in a small pool in the La Balme cave are subjected to a drought with the complete drying out of their biotope; they support in situ this lack of water and, living in a latent way inside the clayey matrix. Thanks to the great hygroscopy of the clay, enough humidity stays around the Planarians to enable them to survive. During this period the Planaria may undergo spontaneous divisions resulting in their asexual multiplication.

The presence of Bogidiella albertimagni Hertzog 1933 in Romania and some remarks on the European species of this Genus., 1965,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Dancau Dan, Serban Eugne
Studying several Bogidiella individuals collected from the phreatic biotope of Cerna Valley (Oltenia region) using Karaman-Chappuis method, authors announce the presence of Bogidiella albertimagni Hertzog in Romania. After a description of the studied individuals, the authors talk about some problems concerning the taxonomic value of B. albertimagni and B. skopljensis Karaman (this second species being formerly known in Romania) and the validity of B. denticulata Mestrov described from Yugoslavia.

Material on the ecology and biology of Sphaeromides bureschi Strouhal., 1966,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Angelov Angel.
The acquatic cave Isopod Sphaeromides bureschi Strouhal was discovered by I. Buresch in the underground water of two caves in western Stara-Planina. In this paper the author describes a new station, a spring, in the same region and then exposes the results of ecological and biological observations on this species (biotope, temperature, sex-ratio, feeding regime, locomotion).

The ecological classification of cave and fissure water in the underground water habitats., 1967,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Husmann Siegfried
Bodies of waters in caves and in crevices of rocks are distinguished from the other subsoil water ecosystems ("eustygon", "stygorhithron", "stygopotamon") under the names "troglostygon" and "petrostygon". The colonisation of subsoil water biotopes involves a fundamental principle which controls the development of the main biotopes for the stygobiont undergroundwater organisms. According to this ecological rule, which is described in detail and formulated, the several interstitial biotopes (for example "eustygopsammal," "rhithrostygopsammal," "potamostygopsephal") are to be considered as the real biotopes of the stygobiont subsoil water organisms; waters in caves, on the contrary, are secondary biotopes of these animals. Caves which contain marine water are described as ecostystem "Thalassotroglon" in their relation to "limnotroglon" (= "stygotroglon"). In this why the contact between "limnospeology" and "thalassospeology" is established, and the limnic and marine microcavernal biotopes; "thalassopsammal" and "thalassopsephal"; are also taken in consideration. "Limnospeology" and "thalassospeology" as limnological and thalassological investigations of subsoil water are characterized as biological fields of work, which serve for the investigation of an ecological unit.

Algal growth experiments in the Baradla cave at Aggletek (Biospeleologica hungarica XXI)., 1967,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Kol Erzsebet
The author kept 108 algal strains (Cyanophyta 53, Chlorophyta 35, Chrysophyta 20), of axenic cultures from the Kol-Algotheca in the Botanical Division of the Hungarian National Sciences Museum in the Baradla Cave, at Aggletek (Hungary) in darkness for 204-420 days under different environmental conditions. The experiments have proven that several algal strains can tolerate well the complete absence of light. Furthermore, that some algal strains show intensive development even under such conditions. These axenic cultures kept in the cave in metal boxes on inorganic medium have shown that the energy source used by these green coloured algae is not some by-product of chemotrophic bacteria, nor is it available organic material, but that it must be some kind of radiation which is able to penetrate even the metal boxes. The ability to adapt to the conditions existing in a cave is not a general characteristic of algal species, but is the capability of individual algal strains within that species. Most probably the algae living in the caves are aerophytes, terrestrial forms, and also some belonging to the edaphon. The cells were found to be smaller in the algae kept in the cave, there was almost no starch deposition in the cells, the pyrenoids were barely discernible, but the development of carotenes was more intense. Whether there are specific cave dwelling algal strains must be determined by future algological research conducted in caves. The composition of the algal floras of the caves may be equally dependent upon the chemical and physical characteristics of the biotope, as is the case in every other biotope.

The ecological classification of cave and fissure water in the underground water habitats., 1967,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Husmann Siegfried
Bodies of waters in caves and in crevices of rocks are distinguished from the other subsoil water ecosystems ("eustygon", "stygorhithron", "stygopotamon") under the names "troglostygon" and "petrostygon". The colonisation of subsoil water biotopes involves a fundamental principle which controls the development of the main biotopes for the stygobiont undergroundwater organisms. According to this ecological rule, which is described in detail and formulated, the several interstitial biotopes (for example "eustygopsammal," "rhithrostygopsammal," "potamostygopsephal") are to be considered as the real biotopes of the stygobiont subsoil water organisms; waters in caves, on the contrary, are secondary biotopes of these animals. Caves which contain marine water are described as ecostystem "Thalassotroglon" in their relation to "limnotroglon" (= "stygotroglon"). In this why the contact between "limnospeology" and "thalassospeology" is established, and the limnic and marine microcavernal biotopes; "thalassopsammal" and "thalassopsephal"; are also taken in consideration. "Limnospeology" and "thalassospeology" as limnological and thalassological investigations of subsoil water are characterized as biological fields of work, which serve for the investigation of an ecological unit.

Algal growth experiments in the Baradla cave at Aggletek (Biospeleologica hungarica XXI)., 1967,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Kol Erzsebet
The author kept 108 algal strains (Cyanophyta 53, Chlorophyta 35, Chrysophyta 20), of axenic cultures from the Kol-Algotheca in the Botanical Division of the Hungarian National Sciences Museum in the Baradla Cave, at Aggletek (Hungary) in darkness for 204-420 days under different environmental conditions. The experiments have proven that several algal strains can tolerate well the complete absence of light. Furthermore, that some algal strains show intensive development even under such conditions. These axenic cultures kept in the cave in metal boxes on inorganic medium have shown that the energy source used by these green coloured algae is not some by-product of chemotrophic bacteria, nor is it available organic material, but that it must be some kind of radiation which is able to penetrate even the metal boxes. The ability to adapt to the conditions existing in a cave is not a general characteristic of algal species, but is the capability of individual algal strains within that species. Most probably the algae living in the caves are aerophytes, terrestrial forms, and also some belonging to the edaphon. The cells were found to be smaller in the algae kept in the cave, there was almost no starch deposition in the cells, the pyrenoids were barely discernible, but the development of carotenes was more intense. Whether there are specific cave dwelling algal strains must be determined by future algological research conducted in caves. The composition of the algal floras of the caves may be equally dependent upon the chemical and physical characteristics of the biotope, as is the case in every other biotope.

Ecology, systematics and distribution of two sympatric in North-Germany living Bathynella species (Crustacea, Syncarida)., 1968,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Husmann Siegfried
The sympatric occurrence of two bathynellids previously considered races of Bathynella natans; natans and stammeri; is evaluated as a natural ecological-genetic experiment. Since no hybrids appear in mixed populations, these forms are proven to be full species: Bathynella natans Vejdovsky and Bathynella stammeri (Jakobi). Besides the form of the mandibles, which until now was the only taxonomically useful diagnostic character in the genus Bathynella, 7 additional, suitably applicable morphological characters have been found (Table 3). The Bathynella biotope investigated is assigned to the "eustygopsammal" subterranean life province (Husmann 1966), which is associated with the "Parastenocaris-Bathynella" biocoenosis (Husmann 1962). This particular biocoenosis is evidently resistant to organic pollution of ground water. The sympatric existence of Bathynella natans and B.stammeri can be explained by consideration of the geo-limnological developmental history of the interstitial zone of the North German low plain. Sands and gravels were widely deposited in the North German Basin by northward-retreating glaciers, creating microcavernous living space and passages for the interstitial fauna. This microfauna could find passages in layers of sand under and along the northward-flowing streams. Primitive Ice-Age streams (,,Urstromtler" of Keilhack) formed east-to-west cross-connections between the south-north distributional corridors. The great geographical expansion of the tributary river courses which reached the north German plain before, during, and after the Ice Age suggests that ground water habitats were temporarily separated and later rejoined by orogenic movements of the earth's surface. Such an orogenically caused, geomorphological isolation lasting for a sufficiently long geological period could have led to the result that species, originating in isolation from the same phylogenetic stock, subsequently were brought together again in the same biotope. This is particularly true for bathynellids, which as archaic types (Lebensformtypen) of the ancient, extreme "mesopsammal" biotope (Remane) are quite likely to have become sympatric in such a manner.

Ecology, systematics and distribution of two sympatric in North-Germany living Bathynella species (Crustacea, Syncarida)., 1968,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Husmann Siegfried
The sympatric occurrence of two bathynellids previously considered races of Bathynella natans; natans and stammeri; is evaluated as a natural ecological-genetic experiment. Since no hybrids appear in mixed populations, these forms are proven to be full species: Bathynella natans Vejdovsky and Bathynella stammeri (Jakobi). Besides the form of the mandibles, which until now was the only taxonomically useful diagnostic character in the genus Bathynella, 7 additional, suitably applicable morphological characters have been found (Table 3). The Bathynella biotope investigated is assigned to the "eustygopsammal" subterranean life province (Husmann 1966), which is associated with the "Parastenocaris-Bathynella" biocoenosis (Husmann 1962). This particular biocoenosis is evidently resistant to organic pollution of ground water. The sympatric existence of Bathynella natans and B.stammeri can be explained by consideration of the geo-limnological developmental history of the interstitial zone of the North German low plain. Sands and gravels were widely deposited in the North German Basin by northward-retreating glaciers, creating microcavernous living space and passages for the interstitial fauna. This microfauna could find passages in layers of sand under and along the northward-flowing streams. Primitive Ice-Age streams (,,Urstromtler" of Keilhack) formed east-to-west cross-connections between the south-north distributional corridors. The great geographical expansion of the tributary river courses which reached the north German plain before, during, and after the Ice Age suggests that ground water habitats were temporarily separated and later rejoined by orogenic movements of the earth's surface. Such an orogenically caused, geomorphological isolation lasting for a sufficiently long geological period could have led to the result that species, originating in isolation from the same phylogenetic stock, subsequently were brought together again in the same biotope. This is particularly true for bathynellids, which as archaic types (Lebensformtypen) of the ancient, extreme "mesopsammal" biotope (Remane) are quite likely to have become sympatric in such a manner.

The subterranean fauna associated with the blind palaemonid prawn Typhlocaris galilea Calman., 1971,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Dov Por Francis, Tsurnamal Moshe
Exploration of the subterranean tract of the spring of En-Nur (at the North end of Lake Tiberias) by scuba diving and by use of new collecting methods, led to the discovery of a living community associated with the blind prawn Typhlocaris galilea. A rich growth of sulphur bacteria and of pigmentless Cyanophyceae from the trophic basis in this peculiar biotope. Representatives of three hypogeic crustacean orders have been found as well as some peculiar gastropods, nematods and oligocaets. The latter are the main food of Typhlocaris galilea.

Stenasellus skopljensis thermalis ssp. n. (Crustacea, Isopoda) of a hot spring in Bosnia., 1971,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Lattingerpenko Romana, Mestrov Milan
The new subspecies Stenasellus skopljensis thermalis, from Banja Luka (Bosnie, Yugoslavia) is described. From the ecological point of view this form differs from the others because it inhabits underground waters of elevated temperature (240C). Another constantly abundant species, St. hungaricus thermalis Mestrov, also occurs in Yugoslavia under the same ecological conditions, in the warm springs of Podsused near Zagreb. This indicates that these underground waters at elevated temperature are not accidental but preferred habitats for these forms, and confirms once again that thermal waters of this type are the biotopes-refuges in which certain relic forms are retained.

The living environment of Stenasellus virei Dollfus, 1897 (Asellote troglobe Crustacean): preliminary results., 1971,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Magniez Guy
Stenasellus virei is now known from 77 localities (caves, phreatic waters and underflow of some rivers) of the eastern Aquitanian basin, central and eastern Pyrenees, and of Spain. A classification of the different biotopes of the species is attempted herein, and some of their characteristics are summarily described. This cavernicolous species can now be viewed in a new light, as much ecological as systematic or biogeographic.

The living environment of Stenasellus virei Dollfus, 1897 (Asellote troglobe Crustacean): preliminary results., 1971,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Magniez Guy
Stenasellus virei is now known from 77 localities (caves, phreatic waters and underflow of some rivers) of the eastern Aquitanian basin, central and eastern Pyrenees, and of Spain. A classification of the different biotopes of the species is attempted herein, and some of their characteristics are summarily described. This cavernicolous species can now be viewed in a new light, as much ecological as systematic or biogeographic.

The subterranean fauna associated with the blind palaemonid prawn Typhlocaris galilea Calman., 1971,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Dov Por Francis, Tsurnamal Moshe
Exploration of the subterranean tract of the spring of En-Nur (at the North end of Lake Tiberias) by scuba diving and by use of new collecting methods, led to the discovery of a living community associated with the blind prawn Typhlocaris galilea. A rich growth of sulphur bacteria and of pigmentless Cyanophyceae from the trophic basis in this peculiar biotope. Representatives of three hypogeic crustacean orders have been found as well as some peculiar gastropods, nematods and oligocaets. The latter are the main food of Typhlocaris galilea.

Results 1 to 15 of 34
You probably didn't submit anything to search for