MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology

Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That waste water is water containing sewage and waste products [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for chains (Keyword) returned 8 results for the whole karstbase:
Calcite Moonmilk: Crystal Morphology and Environment of Formation in Caves in the Italian Alps, 2000, Borsato A, Frisia S, Jones B, Van Der Borg K,
Calcite moonmilk, which is a cave deposit formed of calcite crystals and water, is found in many caves in the Italian Alps. These modern and ancient deposits are formed of fiber calcite crystals, 50-500 nm wide and 1 to > 10 {micro}m long, and polycrystalline chains that have few crystal defects. Radiocarbon dating indicates that most moonmilk deposits in these caves are fossil and that for most precipitation ceased [~] 6400 cal years BP, at the end of the mid-Holocene Hypsithermal. In the caves of the Italian Alps, the optimal conditions for formation of calcite moonmilk are: (1) a temperature range of 3.5-5.5{degrees}C, (2) low discharge volumes of seepage waters that are slightly supersaturated (SICAL = 0.0 to [~] 0.2), and (3) relative humidity that is at or close to 100%. Microbial activity apparently did not play an active role in the formation of the calcite moonmilk. Conditions for moonmilk formation are typically found in caves that are located beneath land surfaces, which are soil covered and support a conifer forest. Precipitation of the fiber calcite crystals apparently involved very slow flow of slightly supersaturated fluids. The fact that moonmilk appears to form under a narrow range of environmental conditions means that this cave deposit has potential as a paleoclimatic indicator in high alpine karst areas

McCauley sinks: a compound breccia pipe in evaporite karst, Holbrook Basin, Arizona, U.S.A., 2001, Neal J. T. , Johnson K. S.
The McCauley Sinks, in the Holbrook basin of northeastern Arizona, are comprised of some 50 individual sinkholes within a 3-km-wide depression. The sinks are grouped in a semi-concentric pattern of three nested rings. The outer ring is an apparent tension zone containing ring fractures. The two inner rings are semicircular chains of large sinkholes, ranging up to 100 m across and 50 m deep. Several sub-basins within the larger depression show local down warping and possible incipient sinkholes. Permian Kaibab Formation limestone is the principal surface lithology; the limestone here is less than 15 m thick and is near its easternmost limit. Although surface rillenkarren are present, and the sinks are seen in the Kaibab limestone outcrops, the Kaibab is mainly a passive rock unit that has collapsed into solution cavities developed in underlying salt beds. Beneath the Kaibab is Coconino Sandstone, which overlies the Permian Schnebly Hill Formation, the unit containing the evaporite rocks principally halite in the Corduroy Member. Evaporite karst in this part of the Holbrook basin is quite different from the eastern part, probably because of the westward disappearance of the Holbrook anticline, a structure that has major joint systems that help channel water down to the salt beds farther to the east. Also, the McCauley Sinks are near the western limits of the evaporites. The structure at McCauley Sinks suggests a compound breccia pipe, with multiple sinks contributing to the inward-dipping major depression. The Richards Lake depression, 5 km southeast of McCauley Sinks, is similar in form and size but contains only a single, central sinkhole. An apparent difference in hydrogeology at McCauley Sinks is their proximity to the adjacent, deeply incised, Chevelon Canyon drainage, but the hydrologic connections are unknown.

McCauley Sinks: a compound breccia pipe in evaporite karst, Holbrook basin, Arizona, USA, 2002, Neal J. T. , Johnson K. S. ,
The McCauley Sinks, in the Holbrook basin of northeastern Arizona, are comprised of some 50 individual sinkholes within a 3-km wide depression. The sinks are grouped in a semi-concentric pattern of three nested rings. The outer ring is an apparent tension zone containing ring fractures. The two inner rings are semi-circular chains of large sinkholes, ranging up to 100 in across and 50 in deep. Several sub-basins within the larger depression show local downwarping and possible incipient sinkholes. Permian Kaibab Formation limestone is the principal surface lithology; the limestone here is less than 15 in thick and is near its easternmost limit. Although surface rillenkarren are present, and the sinks are seen in the Kaibab limestone outcrops, the Kaibab is mainly a passive rock unit that has collapsed into solution cavities developed in underlying salt beds. Beneath the Kaibab is Coconino Sandstone, which overlies the Permian Schnebly Hill Formation, the unit containing the evaporite rocks-principally halite in the Corduroy Member. Evaporite karst in this part of the Holbrook basin is quite different from the eastern part, probably because of the westward disappearance of the Holbrook anticline, a structure that has major joint systems that help channel water down to the salt beds farther to the east. Also, the McCauley Sinks are near the western limits of the evaporites. The structure at McCauley Sinks suggests a compound breccia pipe, with multiple sinks contributing to the inward-dipping major depression. The Richards Lake depression, 5 kin southeast of McCauley Sinks, is similar in form and size but contains only a single, central sinkhole. An apparent difference in hydrogeology at McCauley Sinks is their proximity to the adjacent, deeply incised, Chevelon Canyon drainage, but the hydrologic connections are unknown. The 3-km-wide McCauley Sinks karst depression, along with five other nearby depressions, provide substantial hydrologic catchment. Because of widespread piping into karst features and jointed bedrock at shallow depth, runoff water does not pond easily at the surface. There appears to be a greater recharge efficiency here than in alluvial areas; thus concern exists for groundwater users downgradient from the karst area. Accordingly, sinkholes and open fissures should not be used for waste disposal

Current issues and uncertainties in the measurement and modelling of air-vegetation exchange and within-plant processing of POPs, 2004, Barber Jl, Thomas Go, Kerstiens G, Jones Kc,
Air-vegetation exchange of POPs is an important process controlling the entry of POPs into terrestrial food chains, and may also have a significant effect on the global movement of these compounds. Many factors affect the air-vegetation transfer including: the physicochemical properties of the compounds of interest; environmental factors such as temperature, wind speed, humidity and light conditions; and plant characteristics such as functional type, leaf surface area, cuticular structure, and leaf longevity. The purpose of this review is to quantify the effects these differences might have on air/plant exchange of POPs, and to point out the major gaps in the knowledge of this subject that require further research. Uptake mechanisms are complicated, with the role of each factor in controlling partitioning, fate and behaviour process still not fully understood. Consequently, current models of air-vegetation exchange do not incorporate variability in these factors, with the exception of temperature. These models instead rely on using average values for a number of environmental factors (e.g. plant lipid content, surface area), ignoring the large variations in these values. The available models suggest that boundary layer conductance is of key importance in the uptake of POPs, although large uncertainties in the cuticular pathway prevents confirmation of this with any degree of certainty, and experimental data seems to show plant-side resistance to be important. Models are usually based on the assumption that POP uptake occurs through the lipophilic cuticle which covers aerial surfaces of plants. However, some authors have recently attached greater importance to the stomatal route of entry into the leaf for gas phase compounds. There is a need for greater mechanistic understanding of air-plant exchange and the 'scaling' of factors affecting it. The review also suggests a number of key variables that researchers should measure in their experiments to allow comparisons to be made between studies in order to improve our understanding of what causes any differences in measured data between sites. (C) 2003 Elsevier Ltd. All rights reserved

Distribution, morphology, and origins of Martian pit crater chains, 2004, Wyrick D. , Ferrill D. A. , Morris A. P. , Colton S. L. , Sims D. W. ,
Pit craters are circular to elliptical depressions found in alignments (chains), which in many cases coalesce into linear troughs. They are common on the surface of Mars and similar to features observed on Earth and other terrestrial bodies. Pit craters lack an elevated rim, ejecta deposits, or lava flows that are associated with impact craters or calderas. It is generally agreed that the pits are formed by collapse into a subsurface cavity or explosive eruption. Hypotheses regarding the formation of pit crater chains require development of a substantial subsurface void to accommodate collapse of the overlying material. Suggested mechanisms of formation include: collapsed lava tubes, dike swarms, collapsed magma chamber, substrate dissolution ( analogous to terrestrial karst), fissuring beneath loose material, and dilational faulting. The research described here is intended to constrain current interpretations of pit crater chain formation by analyzing their distribution and morphology. The western hemisphere of Mars was systematically mapped using Mars Orbiter Camera (MOC) images to generate ArcView(TM) Geographic Information System (GIS) coverages. All visible pit crater chains were mapped, including their orientations and associations with other structures. We found that pit chains commonly occur in areas that show regional extension or local fissuring. There is a strong correlation between pit chains and fault-bounded grabens. Frequently, there are transitions along strike from ( 1) visible faulting to ( 2) faults and pits to ( 3) pits alone. We performed a detailed quantitative analysis of pit crater morphology using MOC narrow angle images, Thermal Emission Imaging System (THEMIS) visual images, and Mars Orbiter Laser Altimeter (MOLA) data. This allowed us to determine a pattern of pit chain evolution and calculate pit depth, slope, and volume. Volumes of approximately 150 pits from five areas were calculated to determine volume size distribution and regional trends. The information collected in the study was then compared with non-Martian examples of pit chains and physical analog models. We evaluated the various mechanisms for pit chain development based on the data collected and conclude that dilational normal faulting and sub-vertical fissuring provide the simplest and most comprehensive mechanisms to explain the regional associations, detailed geometry, and progression of pit chain development

Quaternary glaciations of Turkey, 2011, Sarikaya M. A. , Ciner A. , Zreda M.

The cosmogenic exposure ages obtained from glacial landforms in several Turkish mountains provided a basis to reconstruct glacio-chronology and paleoclimate of Turkey. Glacier-related landforms occur in three major regions of Turkey; (1) the Taurus Mountains, along the Mediterranean coast and southeast Turkey, (2) mountain ranges along the Eastern Black Sea Region, and (3) volcanoes and independent mountain chains scattered across the Anatolian Plateau. 10Be 26Al and 36Cl ages show that the oldest and most extensive mountain glaciers were developed during the Last Glacial Maximum. Unusual Early Holocene glaciations, dated to 9 ka-10 ka, were also reported from Mount Erciyes and Aladaglar.


Groundwater in the Arab Middle East , 2012, Wagner, Wolfgang

The region covering the Arabian Peninsula and the adjoining northern Arabian countries coincides approximately with a specific large geologic struCture: the Arabian Plate. Politically the region includes the countries of the Arabian Peninsula together with the northern Arab countries: AI Mashreq - the eastern part of the caliphate or of the Arab World. In a geographic political view the region may be denominated Arab Middle East (Ash Sharq al Awsat) or Western Asia.
The Arab Middle East with an area of 3.7 million lan2 forms a small subcontinent between the Mediterranean Sea, Red Sea, Arabian Sea, the Gulf and, in the north, the Zagros-Taurus mountain chains. About 90% of the region are semiarid to arid steppe or desert areas. As perennial rivers exist only in the northern and western margins of the Arab Middle East, the use of groundwater resources is an essential basis for the economic development and survival of the countries. The
region includes 12 Arab countries; water demand/supply previews indicaTe precarious siruations in the near future for mosu of these countries.
The idea ci compiling a book on "Groundwater in the Arab Middle East" arose from the professional activities of the author as hydrogeologist in the services of the German Government between 1965 and 1998, much of which was devoted to groundwater projectS in the Middle East. The information presented in the book is based on reviews of a large number of publications, reportS and documents as well as on field experience in various Arab countries.
The groundwater projects in the Middle East, in which the author had the
chance to panicipate, were carried out in the framework of Technical Cooperation between national or international institutions of the region and the Federal Institute of Geosciences and Natural Resources, BGR, Hannover, partly in connection with activities of the German Agency for Technical Cooperation, GTZ, Eschbom. The projects were sponsored by the Ministry for Economic Cooperation and Development, Bonn. Regional information on groundwater conditions in the Middle East were obtained, in panicular, through long-term assigrunents of  the author to international institutions: The Arab Centre for the Studies of Arid Zones and Dry Lands of the Arab League (ACSAD), Damascus, and the United Nations Economic and Social Commission for Western Asia (ESCWA), Amman and Beirut. 


Turkish karst aquifers, 2015, Gunay G. , Guner N. , Tork K.

One third of Turkey’s surface is underlain by carbonate rocks that have been subdivided into four karst regions. The carbonate rock units are about 200 km wide along the Taurus Mountains that attain elevations of 2500 m. Karst features of western Turkey bordering the Aegean and Mediterranean seas demonstrate the tectonic, lithological and climatic controls on the occurrence, movement, and chemical characteristics of groundwater. In Turkey all karstic feature, such as lapies, caves, sinkholes, uvalas, poljes, ground river valleys developed in all karstic areas. Karstification is related not only to the thickness and to purity of limestone, climate and height but also to tectonic movements. Water resources of karst terrains of Turkey are relatively rich and as such are very important for the economic development of the country. High mountain chains, very often associated with the karst terrains, are responsible for some important and beneficial characteristics of these water resources. Four karst regions are: (1) Taurus karst region, (2) southeast Anatolia karst region, (3) central Anatolia karst region, and (4) northwest Anatolia and Thrace karst regions.


Results 1 to 8 of 8
You probably didn't submit anything to search for