Search in KarstBase
This PhD thesis deals with the speleogenesis of the youngest six phases in the Siebenhengste system (Switzerland). A speleogenetic model is developed, linking the four-state-model with the model of Audra (1994), taking into account the speleogenetic processes in the flooding zone. The refinement of the speleogenetic phases allowed to reconstruct the valley deepening processes in the late Quarternary. Moreover, an idea about the landscape evolution since the Mio-Pliocene is sketched. U/Th datings allowed the timing of the last four speleogenetic phases as well as glacial advances and retreats during the last 400'000 years, thus considerably enhancing the continental Quarternary record. With information from Baerenschacht and St. Beatus Cave, the tectonic history and the geometry of the folds could be retraced. A comprehensive analysis of all dye tracing experiments is given.
Among the 16 speleothems that were collected from 7 submarine caves and pits for the purpose of 14C and U-Th dating and reconstructing sea-level changes, two speleothems were dated by both methods. Different environmental conditions during the speleothem deposition and after the submergence resulted with different appropriateness for speleothem dating by these techniques. Well preserved speleothems gave reliable results by both methods, while U-Th method showed disadvantage in the case of carbonates contaminated with detrital material, as well as in the case of carbonate from marine overgrowth that covers the speleothems. However, U-Th method using MC ICPMS technique which requires only 100-300 mg of sample per analysis (instead of ca. 30 g for 14C conventional method), offers better age resolution that is essential for speleothem dating.
Ochtiná Aragonite Cave is a 300 m long cryptokarstic cavity with simple linear sections linked to a geometrically irregular spongework labyrinth. The limestones, partly metasomatically altered to ankerite and siderite, occur as lenses in insoluble rocks. Oxygen-enriched meteoric water seeping along the faults caused siderite/ankerite weathering and transformation to ochres that were later removed by mechanical erosion. Corrosion was enhanced by sulphide weathering of gangue minerals and by carbon dioxide released from decomposition of siderite/ankerite. The initial phreatic speleogens, older than 780 ka, were created by dissolution in density-derived convectional cellular circulation conditions of very slow flow. Thermohaline convection cells operating in the flooded cave might also have influenced its morphology. Later vadose corrosional events have altered the original form to a large extent. Water levels have fluctuated many times during its history as the cave filled during wet periods and then slowly drained.
Mn-rich loams with Ni-bearing asbolane and birnessite were formed by microbial precipitation in the ponds remaining after the floods. Allophane was produced in the acidic environment of sulphide weathering. La-Nd-phosphate and REE enriched Mn-oxide precipitated on geochemical barriers in the asbolane layers. Ochres containing about 50 wt.% of water influence the cave microclimate and the precipitation of secondary aragonite. An oldest aragonite generation is preserved as corroded relics in ceiling niches truncated by corrosional bevels. TIMS and alpha counting U series dating has yielded ages of about 500-450 and 138-121 ka, indicating that there have been several episodes of deposition, occurring during Quaternary warm periods (Elsterian 1/2, Eemian). Spiral and acicular forms representing a second generation began to be deposited in Late Glacial (14 ka – Alleröd) times. The youngest aragonite, frostwork, continues to be deposited today. Both of the younger generations have similar isotopic compositions, indicating that they originated in conditions very similar, or identical, to those found at present in the cave.
With the intention of reconstructing Late Pleistocene – Holocene sea-level changes along the Eastern Adriatic coast, a series of speleothems were collected from several submerged caves and pits, in order to constrain periods of their deposition and ceased growth related to sea-level fluctuations. For that purpose, stalagmites provide more reliable records than stalactites, due to their successive layers deposited perpendicularly to the growth direction. Therefore, stalagmites have been collected preferably. But, two of 17 speleothems displayed unexpected interior morphology – speleothem L-1 collected at the depth of 1.5 m in Medvjeđa spilja Cave on Lošinj Island, and speleothem M-25 from Pit near Iški Mrtovnjak Islet collected at the depth of 25 m. Both of the samples were taken from the cave floor, in the growth position of the stalagmite. But the insight into the perpendicular cut with evident central tube revealed their true (stalactitic) origin and additional confirmations were obtained by longitudinal cut and U-Th and 14C dating. Just as the causes of their breakdowns were probably different, so were their falls; speleothem M 25 (together with several other speleothems around it) stuck in the marine sediment in its primary position, while L-1 turned upside-down and even continued crystallizing during the lower sea level. These events are possible in the continental caves, as well. Evidently, it is much easier to recognize and avoid these problems in air-filled caves than in the submarine ones where the speleothems are almost always covered with marine overgrowth, which disguises their outer morphology. Additionally, the bases of the stalagmites are also sometimes covered with marine sediment, which makes correct estimation rather difficult.
Both marine and terrestrial carbonates can be precisely dated by U-series disequilibrium methods in the age range <600 ka (thousands of years). Here we focus on 230Th/U-dating of reef corals and speleothems. The requirements, potential but also the problems of 230Th/U-dating of both archives are presented and discussed. Fossil reef corals are used as indicators for past sea level fluctuations and as high-resolution palaeoclimate archives. These applications require precise and accurate dating, which can be achieved using 230Th/U-dating. However, many fossil corals show evidence for post-depositional open-system behaviour. This limits the accuracy of 230Th/U-ages of fossil corals rather than the analytical precision. We present and discuss the currently available methods to identify altered corals and also review three recently developed open-system dating approaches. Speleothems are very important climate archives because they are found in most continental areas and can be used to investigate and directly compare spatially variable climate conditions. They usually show no evidence for open-system behaviour but may contain significant amounts of initial detrital 230Th. We discuss the currently available correction techniques and methods to derive the most reliable ages. Furthermore, we give an overview of the state of the art techniques for U-series isotopes measurements.
The Crimean Mountains are well known from the abundance of Middle and Late Palaeolithic sites and palaeontological remains recovered from cultural layers in caves and rockshelters. The fossil-bearing deposits of Emine-Bair-Khosar Cave, located at the elevation of 1000 m on the Chatyrdag Plateau, yielded a very diverse and numerous vertebrate remains that widen the knowledge of Late Pleistocene faunal diversity in the Crimea. The assemblage comprised in total almost 50 species of vertebrates. Studies included geomorphological, geological and stratigraphic analyses as well AMS 14C dating. Faunal remains were present in ten palaeontological sites. The main bone accumulation (section Ba2) was deposited during Middle Valdai or Vytachiv (MIS 3) interstadial, and including a long time gap, to the end of the Pleistocene and the Holocene. Comparison of the Emine-Bair-Khosar fauna with vertebrate faunas of other Crimean sites showed a remarkable stability in the faunal composition and frequency during the whole MIS 3 interstadial. Steppe and other open-country species dominated in the compared assemblages, while boreal-tundra species were far less numerous. Inhabitants of forests, including red deer and some rodents, were stable members of fossil assemblages.
The classic hypothesis of G. Horn’s (1935) subglacial speleogenesis as an explanation of the relatively small diameter cave conduits in the Scandinavian marble stripe karst is reviewed. Recent work, including accurate cave mapping and morphological analysis, radiometric dating of cave deposits, chemical kinetics experiments and computer simulations have challenged the old theory. Scandinavia has relatively small caves that often have surprisingly high ages, going beyond the limit of Th/U dating. The high ages are apparently compensated by correspondingly slow wall retreat rates in the icecontact regime, and longer periods when the caves were inactive. Ice-contact speleogenesis varied in time and space, in pace with waxing and waning of wet-based ice. Maze or labyrinth morphology appears as a characteristic feature of caves ascribed to these processes.
Hypogene speleogenesis in the western United States is associated with a deep source of water and gases that rise and mix with shallow aquifer water. Caves are formed below the surface without surface expressions (ie, sinkholes, sinking streams), and byproducts of speleogenesis are precipitated during the late phase of hypogene speleogenesis. These byproducts provide geochemical and geochronological evidence of a region’s geologic history and include gypsum rinds and blocks, elemental sulfur, halloysite-10Å, alunite, natroalunite, and other sulfur-related minerals. The following speleogenetic and speleothemic features are common: alteration rinds, crusts, mammillaries, folia, rafts, and cave spar. The types of hypogene speleogenesis vary and many can be expressed in space and time in relation to paleo-water tables. We identify two general types: (1) H2S-H2SO4-dominated speleogenesis that takes place predominantly near a paleo-water table (a few meters above and below), and (2) CO2-dominated speleogenesis that mostly takes place 10s to 100s of meters below a paleo-water table, with latest-stage imprints within meters of the water table.
The Kane caves in Wyoming, and the Guadalupe Mountains caves in New Mexico and West Texas, are examples of H2S-H2SO4-dominated speleogenesis (also known as sulfuric acid speleogenesis, SAS), where deposits of H2S- and H2SO4-origin are the obvious fingerprints. The Grand Canyon caves in Arizona and Glenwood Caverns in Colorado are examples of CO2-dominated systems, where H2SO4 likely played a smaller role (Onac et al., 2007). Deeper-seated geode-like caves, like the spar caves in the Delaware Basin area, are probably CO2-dominated, and have formed at greater depths (~0.5 ± 0.3 km) below paleo-water tables. Caves in the Black Hills, South Dakota are composite and complex and show evidence for multiple phases of hypogene speleogenesis. In areas such as the Grand Canyon region, these paleo-water tables, when they existed in thick carbonate rock stratigraphy and especially at the top of the thick carbonate rock strata, were likely regionally relatively flat in the larger intact tectonic blocks.
Geochemical studies of these deposits are providing information about the timing of speleogenesis through U-Th, U-Pb, and Ar-dating. In addition, tracer data from isotopes of C, O, S, Sr, and U are indicators of the sources of water and gases involved in speleogenesis. From these studies, novel canyon incision and landscape evolution interpretations are appearing in the literature. Beyond this, the study of these byproduct materials seems to show evidence that the deeply sourced water and gases involved in hypogene speleogenesis in the western United States are generated during tectonic and volcanic activity, and may be related to mantle processes associated with formation of the Rocky Mountains, Colorado Plateau, Basin and Range province, and Rio Grande Rift.