MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology

Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That karst couvert is (french.) see covered karst.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for diapirs (Keyword) returned 8 results for the whole karstbase:
Mesozoic dissolution tectonics on the West Central Shelf, UK Central North Sea, 1999, Clark Ja, Cartwright Ja, Stewart Sa,
3-D seismic mapping of the Upper Jurassic Kimmeridge Clay Formation on the West Central Shelf in the Central North Sea reveals a complex fault array which is constrained by seismic interpretation and well control to be of late Jurassic/early Cretaceous age. Fault shapes in plan-view range from linear to circular. Linear fault lengths are 200-300 m to 5 km, the strongly curved and circular faults range in diameter from 100-1000 m. Fault trends are apparently random and display no correlation in location or trend with basement (sub-Zechstein) structures. There is, however, a strong link between this fault pattern and the structure of the top Zechstein (top salt) surface. Linear faults occur at the edges of elongate salt walls and the circular faults lie directly above structures which have been interpreted here as tall, steep-sided salt chimneys. The salt chimneys are present only in the thick, elongate minibasins of Triassic sediment which lie between the salt walls. It is argued that salt dissolution controls the timing, location, orientation and shape of the late Jurassic/early Cretaceous faults. A model is provided to account for the development of both salt walls and chimneys. We suggest that early Triassic karstification of the Zechstein evaporites led to development of an array of circular collapse features. During the ensuing episode of Triassic halokinesis which led to minibasin subsidence and salt wall growth, salt passively 'intruded' the circular collapse features within the subsiding minibasins to form narrow salt chimneys. The resulting array of salt walls and chimneys was subject to dissolution during subsequent subaerial exposure and the late Jurassic marine transgression of the basin (creating the observed fault array), prior to sealing of the salt from circulating groundwater by compaction of the Upper Jurassic and Lower Cretaceous shales which blanket the area. (C) 1999 Elsevier Science Ltd. All rights reserved

Karst and caves in salt diapirs, SE Zagros Mts. (Iran), 1999, Bosá, K Pavel, Bruthans Jirí, , Filippi Michal, Svoboda Tomá, š, , Š, Mí, D Jakub

About 200 salt diapirs (plugs) have been known in the region of the Persian Gulf. numerous are still active. Karst rocks are represented by a rock salt, less frequently by gypsum and anhydrite. Karst developed especially in relics of planated surfaces. Karst forms are completely comparable with karsts in classical carbonate rocks. Different forms can be distinguished: karren, solution pipes, solution dolines, solution-collapse dolines, uvala-like to polje-like depressions, blind valleys, canyon-like forms, ponors, springs and caves. Two World longest caves in salt were discovered and explored here. Long caves are developed especially in a watertable, large ones in plugs near the seacoast. Caves are often outlets of closed depressions (polje-like). Some caves at bottoms of collapse-solution dolines or swallow holes are subvertical. Karst processes are caused dominantly by dissolution of salt, less frequently of gypsum. The process of subrosion of halite under gypcretes plays the main role. Deep circulation of meteoric waters was proved in some plugs.


Speleogenesis in salts, with particular reference to the Mount Sedom area, Israel, 2000, Frumkin A.
Salt dissolution often occurs in deeply buried beds, where caves are hardly known. Caves are normally formed by selective dissolution along flow routes, rather than complete dissolution of the bulk salt mass. Most salt caves are found in diapirs, where open fissures drain meteoric water, rapidly enlarging to form vadose caves. Salt caves develop faster than other cave types, allowing their use as a natural laboratory for speleogenesis. Salt karst terrains exist mainly in arid climates where rock salt outcrops may escape complete destruction by dissolution. Known salt caves are mostly of Holocene age, while older ones are gradually destroyed by dissolution and collapse. The Mount Sedom salt diapir, with some 20 km of salt caves, is the most studied area of salt karst. Its vadose caves are formed by captured ephemeral streams. Cave profiles are adjusted to base level, allowing reconstruction of the evolutionary history of the region. Some 57% of Mount Sedom surface area is drained by the underground karst system. Waters in cave conduits do not reach saturation during flood flow, unless the water is ponded for at least several hours. Common cave features are vertical shafts, close to the cave inlet, and sub-horizontal passages, leading to outlets at base level. Where there is no fissure connection to the edge of the mountain, an inlet cave is formed, capable of absorbing the flood discharge in a terminal pond. Water and solutes escape from the pond by slow seepage through narrow fissures to a regional aquifer.

Origin of the salt valleys in the Canyonlands section of the Colorado Plateau - Evaporite-dissolution collapse versus tectonic subsidence, 2004, Gutierrez F. ,
The salt valleys over the axis of the salt-cored anticlines in the Paradox fold and fault belt (Canyonlands, Utah and Colorado) are created by subsidence of the anticline crests. Traditionally, the collapse of the anticlinal crests was attributed to dissolution of the salt walls (diapirs) forming the anticline cores. Recent studies based on scaled physical models and field observations propose that the salt valleys are a result of regional extension and that salt dissolution had only a minor influence in the development of the axial depressions. This paper presents several arguments and lines of evidence that refute the tectonic model and support the salt dissolution subsidence interpretation. The development of contractional structures in salt dissolution experiments led the advocates of the tectonic interpretation to reject the dissolution-induced subsidence explanation. However, these salt dissolution models do not reproduce the karstification of salt walls in a realistic way, since their analog involves removal of salt from the base of the diapirs during the experiments. Additionally, numerous field examples and laboratory models conducted by other authors indicate that brittle subsidence in karst settings is commonly controlled by subvertical gravity faults. Field evidence against the regional extension model includes (1) a thick cap rock at the top of the salt walls, (2) the concentration of subsidence deformation structures along the crest of the anticlines (salt walls), (3) deformational structures not consistent with the proposed NNE extension, like crestal synforms and NE-SW grabens, (4) dissolution-induced subsidence structures controlled by ring faulting, revealing deep-seated dissolution, (5) large blocks foundered several hundred meters into the salt wall, (6) evidence of recent and active dissolution subsidence, and (7) the aseismic nature of the recently active collapse faults. Although underground salt dissolution seems to be the main cause for the generation of the salt valleys, this phenomenon may have been favored by regional extension tectonics that enhance the circulation of groundwater and salt dissolution. (C) 2003 Elsevier B.V. All rights reserved

Geology and models of salt extrusion at Qum Kuh, central Iran, 2004, Talbot C. J. , Aftabi P. ,
Profiles through the summit of a small nearly axisymmetric extrusion of Oligocene and Miocene salt, and simple analogue models of it, simulate the profiles of piles of ductile nappes extruded from convergent orogens. The salt extrudes from a reactive diapir along a major strike-slip fault at about 82 mm a(-1) and rises 315 m above the central plateau of Iran. The salt has the distinctive smooth profile of a viscous fountain in which an asymmetric apron of allochthonous salt gravity-spreads over its surroundings from a summit dome. Curtain folds developed in the source layer extrude from the diapir and are refolded by major recumbent folds with circumferential axes that simulate nappes. Minor flow folds with circumferential axes refold major folds in the top 10-50 m of surficial salt. Master joints > 100 m long indicate brittle failure of dilated salt by regional stress fields. Tuned to the dimensions of Qum Kuh, analytical and analogue models of viscous extrusions constrain the dynamic salt budget and a time of extrusion of at least 42000 years. New analogue models suggest that the number, amplitude and spacing of major recumbent folds within the extruded salt (and ductile nappe piles) record the number, amount and relative timing of fluctuations in the driving forces

Karst and caves within the salt domes of Iran, 2007, Waltham, Tony.
The salt domes of southern Iran are mountains of pure salt kilometres across formed at the outcrop of deep seated salt diapirs. Namakdan and Hormoz are two domes that support some of the most spectacular landscapes of doline karst eroded into the salt. Beneath the surface, caves contain long passages and some large chambers, all decorated with beautiful displays of salt stalactites.

Morphology and geology of an interior layered deposit in the western Tithonium Chasma, Mars, 2013, Baioni, Davide

This paper describes a morphologic and morphometric survey of a 3.1 km-high, domeshaped upland in western Tithonium Chasma (TC) which coincides with areas containing abundant surface signatures of the sulphate mineral kiersite, as identified by the OMEGA image spectrometer. The morphologic features of the dome were investigated through an integrated analysis of the available Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment (HiRISE), Mars Orbiter Camera, and Context Camera data, while the morphometric characteristics of the structure were measured using a topographic map (25-m contour interval) built from high-resolution stereo camera (HRSC) and Mars Orbiter Laser Altimeter (MOLA) data.
The dome displays surface features that were apparently formed by liquid water probably released from melting ice. These features include karst landforms as well as erosive and depositional landforms. The surface of the dome has few impact craters, which suggests a relatively young age for the dome. Layers in the dome appear laterally continuous and are visibly dipping toward the slopes in some places.
The mineralogical and structural characteristics of the dome suggest that it was emplaced as a diapir, similar to the dome structure located in the eastern part of TC, and to many salt diapirs on Earth.


Morphology and geology of an interior layered deposit in the western Tithonium Chasma, Mars, 2013, Baioni, Davide

This paper describes a morphologic and morphometric survey of a 3.1 km-high, domeshaped upland in western Tithonium Chasma (TC) which coincides with areas containing abundant surface signatures of the sulphate mineral kiersite, as identified by the OMEGA image spectrometer. The morphologic features of the dome were investigated through an integrated analysis of the available Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment (HiRISE), Mars Orbiter Camera, and Context Camera data, while the morphometric characteristics of the structure were measured using a topographic map (25-m contour interval) built from high-resolution stereo camera (HRSC) and Mars Orbiter Laser Altimeter (MOLA) data.

The dome displays surface features that were apparently formed by liquid water probably released from melting ice. These features include karst landforms as well as erosive and depositional landforms. The surface of the dome has few impact craters, which suggests a relatively young age for the dome. Layers in the dome appear laterally continuous and are visibly dipping toward the slopes in some places.

The mineralogical and structural characteristics of the dome suggest that it was emplaced as a diapir, similar to the dome structure located in the eastern part of TC, and to many salt diapirs on Earth.


Results 1 to 8 of 8
You probably didn't submit anything to search for