MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology

Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That lead is a passage noticed but as yet unexplored [25].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for epiphreatic (Keyword) returned 46 results for the whole karstbase:
Showing 1 to 15 of 46
The Origin and Development of Mullamullang Cave N37, Nullarbor Plain, Western Australia, 1970, Hunt, G. S.

Mullamullang Cave N37 is the longest and most complex cave on the Nullarbor Plain, Southern Australia. Unlike the other caves, it possesses extensive levels of phreatic solution tube passages which permit stronger inferences to be made on the development of the collapse passages constituting the bulk of Mullamullang Cave and other deep Nullarbor caves. These passages have been formed by collapse through overlying belts of solution tube networks along an elongated zone of cavitation in the limestone. Massive breakdown was probably initiated at depth within the zone, at least 50 feet below the present watertable level. Upward stoping of the collapse would have been facilitated by the higher network levels in the zone, such as the Ezam and Easter Extension. Channelling of groundwater flow under the Plain is suggested by the belt-like nature of the networks. An epiphreatic origin is proposed for the network levels though convincing morphological evidence is wanting. Eustatic changes in sea level have been of fundamental importance in the development of the multiple levels. Wetter periods in the past were probably important as little development is taking place under present-day dry conditions. Correlation of wetter periods with Pleistocene glacials would help explain the development of huge collapse passages, but such correlatien cannot be assumed on present evidence. Massive collapse and doline formation were followed by subaerial weathering and vadose activity which modified the cave - especially near the entrance. Correlation of levels in Mullamullang with those in other Nullarbor deep caves is attempted. However, Mullamullang Cave is unique probably due to the lithology of the Abrakurrie Limestone in which it is developed.


Frustration and New Year Caves and Their Neighbourhood, Cooleman Plain, N.S.W., 1977, Rieder L. G. , Jennings J. N. , Francis G.

Frustration and New Year Caves are active between-caves, paralleling in plan and profile the ephemeral stream bed of the V-shaped valley in which their entrances are found. The main streamsink in this valley system feeds their stream, which in turn supplies Zed Cave, a short outflow cave just outside the mouth of this valley. This modest derangement of surface drainage pattern is in keeping with the caves which show slight vadose modification of epiphreatic cave development. Although these active caves are young, they probably formed prior to a Late Pleistocene cold period (30,000 to 10,000 BP) on the basis of soils evidence. Clown Cave on the brow of the valley, a dry cave with indications of sluggish phreatic development, is related to a planation phase of Middle or Lower Tertiary age before valley incision. Bow and Keyslot Caves are abandoned in and out and outflow caves respectively, formed when the surface stream channel was a few metres above the present valley bottom so they antedate the active river caves a little. This hydrologically independent part of the Cooleman Plain mirrors in most respects the major parts draining to the Blue Waterholes, differing chiefly in the greater proportion of between-caves discovered so far.


Development of a Subterranean Meander Cutoff: The Abercrombie Caves, New South Wales, 1979, Frank R. , Jennings J. N.

The Abercrombie Caves are exemplary of a subterranean meander cutoff. The bedrock morphology, especially flat solution ceilings, permits reconstruction of an evolution from slow phreatic initiation to epiphreatic establishment of a substantial throughway, followed by progressive succession to vadose flow and phased channel incision. At two separate stages, there was twofold streamsink entry and underground junction of flow. Five 14C dates from alluvial sediments show that capture of the surface stream was certainly complete before c.15,000 BP and that by c.5,000 BP the stream had almost cut down to its present level.


DENUDATION CHRONOLOGY FROM CAVE AND RIVER TERRACE LEVELS - THE CASE OF THE BUCHAN KARST, SOUTHEASTERN AUSTRALIA, 1992, Webb J. A. , Fabel D. , Finlayson B. L. , Ellaway M. , Li S. , Spiertz H. P. ,
Detailed mapping of surface and underground karst features at Buchan, in eastern Victoria, has shown that the three river terraces along the Buchan River can be correlated with three levels of epiphreatic development in the nearby caves. Each level represents a stillstand in the denudational history of the area. Uranium series dating of speleothems and palaeomagnetic studies of cave sediments indicate that all three stillstands are more than 730 ka old. The periods of incision separating the stillstands were probably the result of active tectonic uplift. This contrasts with some northern parts of the Southeastern Highlands, which have been stable since the Eocene. The overall amount of incision and uplift at Buchan is small, indicating that the majority of scarp retreat in this section of the highlands must have occurred earlier. The denudation history of the Buchan area over the last 730 ka has seen only 2-3 m of incision, despite the major climatic and sea-level changes that have occurred in that time. Whereas most karst landscapes in the Northern Hemisphere have been extensively modified during the late Pleistocene, the Buchan karst was little affected, and its geomorphology has an older origin

Nickpoint recession in karst terrains: An example from the Buchan karst, southeastern Australia, 1996, Fabel D, Henricksen D, Finlayson Bl, Webb Ja,
Nickpoint recession in the Buchan karst, southeastern Australia, has resulted in the formation of an underground meander cut-off system in the Murrindal River valley. Three nickpoints have been stranded in the surface channel abandoned by the subterranean piracy, and these can be correlated with river terraces and epiphreatic cave passages in the nearby Buchan River valley. The presence of palaeomagnetically reversed sediments in the youngest cave passage in the Buchan valley implies that the topographically lowest nickpoint in the Murrindal valley is more than 730 ka old, and the other nickpoints are probably several million years old. The nickpoints are occasionally active during floods, but the diversion of most surface flow underground has slowed down their retreat to the extent that they have been effectively stationary for several million years Underground nickpoint migration has been by both incision within major phreatic conduits and their abandonment for lower-level passages. The nickpoints are all present in the upstream part of the cave system, but have not migrated past the sink in the river channel, despite the long period of time available for this to happen. The sink is characterized by collapsed limestone blocks; these filter out the coarse bedload from the river channel. As a result, erosion within the cave passages is dominantly solutional and therefore slower than in the surface channel, where it is mostly mechanical. In addition, to transmit a drop in base level the cave system requires the removal of a larger volume of rock than for the surface migration of a nickpoint, because any roof collapse material in the subsurface system must be removed. These factors have slowed the migration of the base-level changes through the subsurface system, and may be a general feature in caves that have diffuse sinks as their main inputs

Structure et comportement hydraulique des aquifers karstiques, DSc thesis, 1996, Jeannin, P. Y.

This thesis aims to provide a better knowledge of karst flow systems, from a functional point of view (behaviour with time), as well as from a structural one (behaviour in space). The first part of the thesis deals with the hydrodynamic behaviour of karst systems, and the second part with the geometry of karstic networks, which is a strong conditioning factor for the hydrodynamic behaviour.
Many models have been developed in the past for describing the hydrodynamic behaviour of karst hydrogeological systems. They usually aim to provide a tool to extrapolate, in time and/or space, some characteristics of the flow fields, which can only be measured at a few points. Such models often provide a new understanding of the systems, beyond what can be observed directly in the field. Only special field measurements can verify such hypotheses based on numerical models. This is an significant part of this work. For this purpose, two experimental sites have been equipped and measured: Bure site or Milandrine, Ajoie, Switzerland, and Holloch site, Muotathal, Schwyz, Switzerland. These sites gave us this opportunity of simultaneously observe hydrodynamic parameters within the conduit network and, in drillholes, the "low permeability volumes" (LPV) surrounding the conduits.
These observations clearly show the existence of a flow circulation across the low permeability volumes. This flow may represent about 50% of the infiltrated water in the Bure test-field. The epikarst appears to play an important role into the allotment of the infiltrated waters: Part of the infiltrated water is stored at the bottom of the epikarst and slowly flows through the low permeability volumes (LPV) contributing to base flow. When infiltration is significant enough the other part of the water exceeds the storage capacity and flows quickly into the conduit network (quick flow).
For the phreatic zone, observations and models show that the following scheme is adequate to describe the flow behaviour: a network of high permeability conduits, of tow volume, leading to the spring, is surrounded by a large volume of low permeability fissured rock (LPV), which is hydraulically connected to the conduits. Due to the strong difference in hydraulic conductivity between conduits and LPV, hydraulic heads and their variations in time and space are strongly heterogeneous. This makes the use of piezometric maps in karst very questionable.
Flow in LPV can be considered as similar to flow in fractured rocks (laminar flow within joints and joints intersections). At a catchment scale, they can be effectively considered as an equivalent porous media with a hydraulic conductivity of about 10-6 to 10-7 m/s.
Flow in conduits is turbulent and loss of head has to be calculated with appropriate formulas, if wanting any quantitative results. Our observations permitted us to determine the turbulent hydraulic conductivity of some simple karst conduits (k', turbulent flow), which ranges from 0.2 to 11 m/s. Examples also show that the structure of the conduit network plays a significant role on the spatial distribution of hydraulic heads. Particularity hydraulic transmissivity of the aquifer varies with respect to hydrological conditions, because of the presence of overflow conduits located within the epiphreatic zone. This makes the relation between head and discharge not quadratic as would be expected from a (too) simple model (with only one single conduit). The model applied to the downstream part of Holloch is a good illustration of this phenomena.
The flow velocity strongly varies along the length of karst conduits, as shown by tracer experiments. Also, changes in the conduit cross-section produce changes in the (tow velocity profile. Such heterogeneous flow-field plays a significant role in the shape of the breakthrough curves of tracer experiments. It is empirically demonstrated that conduit enlargements induce retardation of the breakthrough curve. If there are several enlargements one after the other, an increase of the apparent dispersivity will result, although no diffusion with the rock matrix or immobile water is present. This produces a scale effect (increase of the apparent dispersivity with observation scale). Such observations can easily be simulated by deterministic and/or black box models.
The structure of karst conduit networks, especially within the phreatic zone, plays an important role not only on the spatial distribution of the hydraulic heads in the conduits themselves, but in the LPV as well. Study of the network geometry is therefore useful for assessing the shape of the flow systems. We further suggest that any hydrogeological study aiming to assess the major characteristics of a flow system should start with a preliminary estimation of the conduit network geometry. Theories and examples presented show that the geometry of karst conduits mainly depends on boundary conditions and the permeability field at the initial stage of the karst genesis. The most significant boundary conditions are: the geometry of the impervious boundaries, infiltration and exfiltration conditions (spring). The initial permeability field is mainly determined by discontinuities (fractures and bedding planes). Today's knowledge allows us to approximate the geometry of a karst network by studying these parameters (impervious boundaries, infiltration, exfiltration, discontinuity field). Analogs and recently developed numerical models help to qualitatively evaluate the sensitivity of the geometry to these parameters. Within the near future, new numerical tools will be developed and will help more closely to address this difficult problem. This development will only be possible if speleological networks can be sufficiently explored and used to calibrate models. Images provided by speleologists to date are and will for a long time be the only data which can adequately portray the conduit networks in karst systems. This is helpful to hydrogeologists. The reason that we present the example of the Lake Thun karst system is that it illustrates the geometry of such conduits networks. Unfortunately, these networks are three-dimensional and their visualisation on paper (2 dimensions) is very restrictive, when compared to more effective 3-D views we can create with computers. As an alternative to deterministic models of speleogenesis, fractal and/or random walk models could be employed.


Modeling of storm responses in conduit flow aquifers with reservoirs, 1998, Halihan Todd, Wicks Carol M. ,
In aquifers containing large voids, such as karst aquifers with caves or basaltic aquifers with lava tubes, hydrographs at wells or springs are used to analyze the structure and response of the hydrogeological system. Numerical modeling of hydrograph response is commonly based on either inverse techniques or postulated flow geometries. However, the range of mechanisms for generating hydrograph responses have not been fully investigated.Physical modeling of these complex non-Darcian systems permits better understanding of the storm responses that conduit systems may generate. Using a numerical model of conduit flow systems which incorporates turbulent flow, some of the mechanisms that can alter storm pulses were investigated by treating them as combinations of pipes that connect reservoirs.The results indicate that the response of a conduit-flow aquifer can range from what has been called 'diffuse' or 'steady' to 'conduit' or 'flashy', without employing a diffusive component. A full range of behavior can be the result of changes from phreatic to epiphreatic conditions in a conduit, changes in conduit geometry, or multiple springs draining the same system. The results provide a quantitative tool to assess spring and well hydrographs, and illustrate mechanisms that can generate observed responses, which have previously been qualitatively interpreted

Unusual flooding in the Calernakm shaft (Alpes-maritimes, France) Origin and consequences of the phenomen on the deep drainage organisation, 1998, Audra Ph.
The Calernakm shaft is located in the Southern french Alps, near Nice It contains large galleries reaching -478 m deep During unusual high waters, the lower part floods over 100 m height The flooding is linked to a semi-dammed karst structure The galleries organisation proves that the karstification privileges subhorizontal conduits in the epiphreatic zone, without favouring any deep phreatic passages The origin of deep phreatic karsts is discussed

Structure et comportement hydraulique des aquifers karstiques, DSc. Thesis, faculte des Sciences de l'Universite de Neuchatel., 1998, Jeannin Py.
This thesis aims to provide a better knowledge of karst flow systems, from a functional point of view (behaviour with time), as well as from a structural one (behaviour in space). The first part of the thesis deals with the hydrodynamic behaviour of karst systems, and the second part with the geometry of karstic networks, which is a strong conditioning factor for the hydrodynamic behaviour. Many models have been developed in the past for describing the hydrodynamic behaviour of karst hydrogeological systems. They usually aim to provide a tool to extrapolate, in time and/or space, some characteristics of the flow fields, which can only be measured at a few points. Such models often provide a new understanding of the systems, beyond what can be observed directly in the field. Only special field measurements can verify such hypotheses based on numerical models. This is an significant part of this work. For this purpose, two experimental sites have been equipped and measured: Bure site or Milandrine, Ajoie, Switzerland, and Holloch site, Muotathal, Schwyz, Switzerland. These sites gave us this opportunity of simultaneously observe hydrodynamic parameters within the conduit network and, in drillholes, the "low permeability volumes" (LPV) surrounding the conduits. These observations clearly show the existence of a flow circulation across the low permeability volumes. This flow may represent about 50% of the infiltrated water in the Bure test-field. The epikarst appears to play an important role into the allotment of the infiltrated waters: Part of the infiltrated water is stored at the bottom of the epikarst and slowly flows through the low permeability volumes (LPV) contributing to base flow. When infiltration is significant enough the other part of the water exceeds the storage capacity and flows quickly into the conduit network (quick flow). For the phreatic zone, observations and models show that the following scheme is adequate to describe the flow behaviour: a network of high permeability conduits, of tow volume, leading to the spring, is surrounded by a large volume of low permeability fissured rock (LPV), which is hydraulically connected to the conduits. Due to the strong difference in hydraulic conductivity between conduits and LPV, hydraulic heads and their variations in time and space are strongly heterogeneous. This makes the use of piezometric maps in karst very questionable. Flow in LPV can be considered as similar to flow in fractured rocks (laminar flow within joints and joints intersections). At a catchment scale, they can be effectively considered as an equivalent porous media with a hydraulic conductivity of about 10-6 to 10-7 m/s. Flow in conduits is turbulent and loss of head has to be calculated with appropriate formulas, if wanting any quantitative results. Our observations permitted us to determine the turbulent hydraulic conductivity of some simple karst conduits (k',turbulent flow), which ranges from 0.2 to 11 m/s. Examples also show that the structure of the conduit network plays a significant role on the spatial distribution of hydraulic heads. Particularity hydraulic transmissivity of the aquifer varies with respect to hydrological conditions, because of the presence of overflow conduits located within the epiphreatic zone. This makes the relation between head and discharge not quadratic as would be expected from a (too) simple model (with only one single conduit). The model applied to the downstream part of Holloch is a good illustration of this phenomena. The flow velocity strongly varies along the length of karst conduits, as shown by tracer experiments. Also, changes in the conduit cross-section produce changes in the (tow velocity profile. Such heterogeneous flow-field plays a significant role in the shape of the breakthrough curves of tracer experiments. It is empirically demonstrated that conduit enlargements induce retardation of the breakthrough curve. If there are several enlargements one after the other, an increase of the apparent dispersivity will result, although no diffusion with the rock matrix or immobile water is present. This produces a scale effect (increase of the apparent dispersivity with observation scale). Such observations can easily be simulated by deterministic and/or black box models. The structure of karst conduit networks, especially within the phreatic zone, plays an important role not only on the spatial distribution of the hydraulic heads in the conduits themselves, but in the LPV as well. Study of the network geometry is therefore useful for assessing the shape of the flow systems. We further suggest that any hydrogeological study aiming to assess the major characteristics of a flow system should start with a preliminary estimation of the conduit network geometry. Theories and examples presented show that the geometry of karst conduits mainly depends on boundary conditions and the permeability field at the initial stage of the karst genesis. The most significant boundary conditions are: the geometry of the impervious boundaries, infiltration and exfiltration conditions (spring). The initial permeability field is mainly determined by discontinuities (fractures and bedding planes). Today's knowledge allows us to approximate the geometry of a karst network by studying these parameters (impervious boundaries, infiltration, exfiltration, discontinuity field). Analogs and recently developed numerical models help to qualitatively evaluate the sensitivity of the geometry to these parameters. Within the near future, new numerical tools will be developed and will help more closely to address this difficult problem. This development will only be possible if speleological networks can be sufficiently explored and used to calibrate models. Images provided by speleologists to date are and will for a long time be the only data which can adequately portray the conduit networks in karst systems. This is helpful to hydrogeologists. The reason that we present the example of the Lake Thun karst system is that it illustrates the geometry of such conduits networks. Unfortunately, these networks are three-dimensional and their visualisation on paper (2 dimensions) is very restrictive, when compared to more effective 3-D views we can create with computers. As an alternative to deterministic models of speleogenesis, fractal and/or random walk models could be employed.

Quelques mcanismes chimiques du creusement des cavernes (plus _particulirement pour ltude de la zone noye), 1999, Lismonde, Baudouin
The classical influences of physical parameters and mixing corrosion are presented to study the equilibrium of the water-air-limestone chemical system. The frequent observation of cave levels in the mountain karstic systems is often associated with the greater facility of dissolution, near the water table. Some chemical mechanisms are analysed to show the greater karst corrosion on this level. Increased air pressure induces an increase in the saturation pCO2 of the water. Two confinement coefficients are used to analyse the role of a limited quantity of air in contact with water. The first (k) is the water mass/water + air mass ratio, the second (kn) is the mass of CO2 in water/ mass of CO2 in water and air ratio. These two ratios show that the latter coefficient varies with air pressure, but is proportional to the varying pCO2.

Corrosion des coupoles de plafond par les fluctuations de pression de lair emprisonn, 2000, Lismonde, Baudouin
CORROSION OF CEILING POCKETS ASSOCIATED WITH PRESSURE OF CONFINE AIR neighbourhood of the water table is proposed. It is applied to the genesis of ceiling pockets. The rising of water confines the air of ceiling pockets. The CO2 pressure increases. The air compres_sion is almost isothermic and induces a mist. The drops of the mist capture the CO2 by a diffusion process. The mass transfer of CO2 from air to drops, then to water, induces a vigorous corrosion of the limestone. For example, 1 m3 of air (at pCO2 = 3.10-3) with a compression of 1 bar (10 m) produces a maximum calcite dissolution of 1 g. A rough computing model for the ceiling pockets' growth is presented also.

Plio-Quaternary karst development in the French Prealps: Speleogenesis and significance of cave fills, 2000, Audra P.
Three French cave systems in the Prealps in the Vercors and Devoluy mountain areas are described. It is possible to reconstruct their evolution by analyzing their morphology and by dating the karst fill using paleomagnetism and U/Th. Cave development began at the end of the Miocene during uplift when inclined tubes formed in the epiphreatic zone. Later the tubes were partially blocked by weathered detritus from the surface. Uplift diverted former recharge away from the caves and extensive calcite deposition occurred. The cave systems were reactivated during glaciations, with flooding to considerable depths. The epiphreatic zone was blocked with calcareous varves from meltwater. During interglacial periods, either calcite deposition or dissolution occurred, depending on the altitude and density of the soil cover.

Speleogenesis in the Ljubljanica river drainage basin, 2000, Sustersic F.
The Ljubljanica is a typical sinking river, disappearing and reappearing on the surface seven times. Data from 1534 surveyed caves in the central part of the basin have been processed statistically. Fragments of horizontal caves are grouped in clearly expressed clusters. At least two of the clusters appear to have been separated apart along the Idrija strik-slip fault and displaced about 12 km. The spatial orientation of the clusters only vaguely fits the present hydrogeological situation, and it is suggested that the caves are relict or re-occupied voids that formed originally in circumstances different from those of today. Most of the caves have typical phreatic shapes, which are further modified into epiphreatic channels only where there has been considerable input of mechanically transported material. The general genetic pattern is: initiation along bedding planes; penetration into joints; expansion by collapse of crushed zones and along faults; filling of lower parts of the system with sediments and transformation into epiphreatic tunnels.

Les stalagmites d'argile, indicateurs de mises en charge, 2001, Audra Ph.
Detailed morphological description and growing processes linked to backflooding in the epiphreatic zone. These are climatic records, particularly concerning rare floodings.

Modeling flow in phreatic and epiphreatic karst conduits in the Holloch cave (Muotatal, Switzerland), 2001, Jeannin P. Y. ,
The Holloch cave is a site where the hydrodynamic behavior of a karst conduit network can be observed with a high degree of precision. Observed heads. discharge rates, conduit sizes, and conduit lengths have been compiled into a simple hydrodynamic model in order to check their consistency. It was possible to calibrate and satisfactorily fit the observed data. Model results show the following: (1) Flow models which are able to simulate turbulent flow in variably saturated conduit networks can adequately model conduit flow-dominated karst systems. (2) Karst systems may be strongly nonlinear, especially because of the presence of epiphreatic conduits. (3) Under certain circumstances, storage in the epiphreatic conduits and in the fissured limestone matrix can be neglected. (4) The typical effective hydraulic conductivity of karst conduits ranges between 1 and 10 m s(-1), and the Louis Formula is adequate to calculate head losses in those conduits. (5) Indirect measurements of flow velocity using scallop size indicate values of similar to 30-40% of the maximal annual discharge, and velocity derived from pebble size indicates values of similar to 150% of the maximal annual discharge

Results 1 to 15 of 46
You probably didn't submit anything to search for