MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_left.php on line 5
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That selenite needles is a sulfate speleothem having the shape of a needle that grows from gypsiferous cave soils [13]. see also speleothem.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_right.php on line 7
What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for firn (Keyword) returned 5 results for the whole karstbase:
Summit Firn Caves, Mount Rainier, Washington, 1971,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Kiver Eugene P. , Mumma Martin D. ,
Heat and steam from the crater fumaroles have melted over 5700 feet (1737 meters) of cave passage in the ice-filled east crater of Mount Rainier. The caves are in approximate balance with the present geothermal heat release. Future changes in the thermal activity of the summit cone will cause corresponding changes in cave passage dimensions, location, and ceiling and wall ablation features

Firn Caves in the Valcanic Craters of Mount Rainier, Washington, 1975,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Kiver Eugene P. , Steele William K.

Crater Firn Caves of Mount St. Helens, Washington, 1998,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Anderson Jr. , C. H. , Behrens, C. J. , Floyd, G. A. , Vining, M. R.
Systematic observation, photo-reconnaissance, mapping, and sampling were performed in the crater firn caves of Mount St. Helens, Washington, from 1981 through 1996 by members of the International Glaciospeleological Survey in cooperation with the United States Forest Service and Mount St. Helens National Monument.

Gypsum Trays in Torgac Cave, New Mexico, 1998,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Doran, L. M. , Hill, C. A.
Mount St. Helens is an active dacitic volcano, which is currently in a semi-dormant state after a catastrophic explosive eruption in May 1980. A dacite dome occupies the crater and plugs the volcanic vent. The crater area has been progressively covered by a layer of snow, firn, and glacier ice since as early as 1986. Heat, steam, and volcanic gases from the crater fumaroles melted over 2415 meters of cave passage in the crater ice mass. The caves are in approximate balance with the present geothermal heat release. Future changes in the thermal activity will influence the dimensions, location, ceiling, wall, and wall ablation features of these caves. Cave passages are located above fumaroles and fractures in and adjacent to the crater lava dome. Cave passages gradually enlarge by ablation, caused by outside air circulation and by geothermal sources beneath the ice. The passages form a circumferential pattern around the dome, with entrance passages on the dome flanks. Passages grow laterally and vertically toward the surface, spawning ceiling collapse.

Glacial processes in caves, 2012,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Luetscher, M.

Glacial processes are known to impinge on many karst systems, of which the active formation of cave ice represents a salient feature. In temperate environments, the preservation of massive, perennial cave ice deposits, comprising sometimes tens of thousands cubic meters, represents probably the most severe test for models of sporadic permafrost distribution. Additionally, stratified cave ice deposits foster detailed glaciochemical investigations to decipher this environmental archive. Recent investigations have shown that the accessible time window for paleoclimate reconstructions sometimes covers several thousands of years, but understanding the relation between external climate change and the cave ice mass balance still remains challenging. Process-oriented studies suggest that interannual cave ice mass balances respond primarily to modifications in the winter thermal and precipitation regimes. By contrast, cave ice ablation is largely driven by heat exchange with the surrounding rock, which is a function of the external mean annual air temperature. Many mid-latitude, low-altitude ice caves are thus likely to disappear under a warming climate scenario. Yet, traces of former glacial processes can be observed in several temperate cave environments. Cryoclasts, solifluction lobes, sorted sediment patterns, cryogenic calcite, and broken speleothems provide clues for the reconstruction of paleo-permafrost. Because they can be accurately dated with U-series methods, cryogenic cave calcites offer a promising field of investigation for past glacial processes 


Results 1 to 5 of 5
You probably didn't submit anything to search for