MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology

Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That capillary stalagmite is hollow stalagmite formed by saturated karst water pushed up through capillaries and small cracks in a sinter crust covering permeable fluvial deposits on the floor of a cave; first reported from cuba, where such stalagmites are composed of aragonite [10].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for foot (Keyword) returned 50 results for the whole karstbase:
Showing 1 to 15 of 50
The Perryfoot-Castleton System - An Experiment in Quantitative Hydrology, 1948, Pill A. L.

Perryfoot Caves, Peak Forest, Derbyshire, 1949, Salmon L. B. , Boldock G.

Detection of caves by gravimetry., 1964, Chico Raymundo J.
For gravimetric investigations, a naturally occurring limestone cave may be compared with a buried empty sphere or cylinder, depending on its shape. The practical limit of detection for a subsurface void, utilizing available equipment (Worden gravity meter) and standard field procedure, is 0.1 milligal. Most corrections normally required by the gravimetric method may be neglected in cave detection, but the altitude control for the field traverse must have an accuracy of 0.1 foot. The detectability of a limestone cave, based on field work done at Luray Caverns, Virginia, and at other localities, is related to its shape, Radius (R), and distance from surface to the cave center (Z). It follows a non-linear relationship. Detectability is possible only when R3/Z2 = 4.3 feet and R3/Z = 2.89 feet. For a cave room and a cave passage respectively.

Relations of jointing to orientation of solution cavities in limestones of central Pennsylvania, 1969, Deike Rg,
Twenty-six caves in central Pennsylvania were divided into passage segments inferred to have formed along the strike of fracture planes. For each cave passage, bearings weighted by footage were used to calculate an average passage orientation. Fractures measured at outcrops near the caves were classed by strike of subparallel sets which were cumulated by frequency for preferred orientations. Average passage orientation compared with orientation of fracture frequency was significant to the 95 percent level. Thus, caves develop more footage parallel to the strike of the more abundant fractures. Solution passages can therefore be used as one determinant of the local fracture system, and a selective solution process may be related to the mechanical origin of the fractures as well as their frequency

Cave Paintings From Kitava, Trobriand Islands, Papua, 1971, Ollier C. D. , Holdsworth D. K

Kitava is the most easterly island of the Trobriand group. It is an uplifted coral atoll, oval in plan, with a maximum diameter of 4 1/2 miles. The centre of the island is swampy and surrounded by a rim that reaches a height of 142 m. Caves occur in various parts of the rim and several have been described in a previous article (Ollier and Holdsworth, 1970). One of the caves, Inakebu, is especially important as it contains the first recorded cave drawings from the Trobriand Islands. Inakebu is situated on the inner edge of the island rim at the north-eastern end of the island. Map 1 shows the location of the cave on Kitava Island. Map 2 is a plan of the cave, surveyed by C.D. Ollier and G. Heers. The location of the cave drawings is shown on the plan. Inakebu is a "bwala", that is a place where the original ancestor of a sub-clan or dala is thought to have emerged from the ground. The bwala tradition is common throughout the Trobriands and neighbouring islands. It has been described by many writers on the anthropology of the area, and was summarised in Ollier and Holdsworth (1969). The people believe that if they enter such places they will become sick and die. Until November, 1968, no member of the present native population had been in the cave, though there is a rumour that a European had entered it about 20 years before, but turned back owing to lack of kerosene. It must be admitted that this tale sounds rather like the stories one hears in Australia that Aborigines were afraid of the dark caves and therefore did not go into them. In fact, the many discoveries in the Nullarbor Plain caves show that they did, and the cave drawings in Inakebu show that someone has been in this cave. The point is that it does not seem to be the present generations who entered the caves but earlier ones; people from "time before" as they say in New Guinea. The first known European to enter the cave was Gilbert Heers, a trader in copra and shell who lived on the nearby island of Vakuta. He went into the cave on 8 November 1968 accompanied by Meiwada, head of the sub-clan associated with Inakebu, who had never been inside before. Heers and Meiwada investigated the two outer chambers but then turned back because they had only poor lights. They returned with better light on 15 November. Since they had not become sick or died, they then found seven other men willing to accompany them. They found the narrow opening leading to the final chamber, and discovered the drawings. None of the men, many of whom were quite old, had ever seen the drawings or heard any mention of them before. The drawings are the only indication that people had previously been in this deep chamber. There are no ashes or soot marks, no footprints, and no pottery, bones or shells such as are commonly found in other Trobriand caves, though bones and shells occur in the chamber near the entrance. With one exception, the drawings are all on the same sort of surface, a clean bedrock surface on cream coloured, fairly dense and uniform limestone, with a suitably rough texture. Generally the surface has a slight overhang, and so is protected from flows or dripping water. On surfaces with dripstone shawls or stalactites, the drawings were always placed between the trickles, on the dry rock. We have found no examples that have been covered by a film of flow stone. The one drawing on a flow stone column is also still on the surface and not covered by later deposition. A film of later deposit would be good to show the age of the drawings, but since the drawings appear to have been deliberately located on dry sites the lack of cover does not indicate that they are necessarily young. There are stencil outlines of three hands, a few small patches of ochre which do not seem to have any form, numerous drawings in black line, and one small engraving.

A test of the importance of cliff-foot caves in tower karst development., 1976, Jennings J. N.

Abstract: Benua Cave, Keriaka Plateau, Bougainville Island, Papua New Guinea, 1985, Wood, Ian D.

Benua Cave is situated in the Keriaka Limestone plateau above the west coast of Bougainville Island. It was first reported by pilots during World War II and first visited speleologically by Fred Parker in 1963. The North Solomons Cave Exploration Group made a three day visit to the cave in order to make an accurate survey. The cave consists of a single chamber, 470m along its longest length with a maximum width of 150m and height of 170m. A river estimated at 3 m3.s-1 rises at the foot of a 100m sheer wall and flows out of the entrance. The cave contains an 18m tall stalagmite of impressive proportions. Side passages can be seen at high level but would require mechanical aids to reach. (The full text of this paper will appear in Australian Caver)

Distribution of the rare earth elements (REE, including La-Lu, Y) along vertical profiles is presented for four well-studied karst-bauxite deposits from Yugoslavia and Greece. For one deposit from Jamaica, La and Y contents are given. All deposits display a downward enrichment of the REE culminating at the base, where authigenic REE minerals have been formed. This REE pattern is characteristic for karst-bauxites formed in situ through the bauxitization of argillaceous material collected in karstic depressions. In this way, the highest enrichment of the REE in the sedimentary cycle has been achieved. Both light REE (LREE) and heavy REE (HREE) were 'mobile' during the bauxitization process and were concentrated at the alkaline barrier of the carbonate footwall. In four out of five studied deposits, the ratios SIGMA-LREE/SIGMA-HREE and La/Y in bauxites decrease downwards, showing an enrichment of the HREE relative to LREE. A further fractionation of the REE took place in the formation of authigenic REE minerals, which exhibit a very high enrichment of LREE relative to HREE. In spite of this, these minerals and bauxites in four studied deposits have a general similarity of the REE distribution patterns, which indicate a close genetic relationship

Alpine karsts. Genesis of large subterranean networks. Examples : the Tennengebirge (Austria) - the Ile de Crémieu, the Chartreuse and the Vercors (France), PhD Thesis, 1993, Audra, Philippe

This work, based on the study of several underground alpine networks, aims to propose some milestone in the history of these karstic regions.

The first part of the work is made up of three regional studies.

The Tennengebirge mountains are a massif of the limestone High Alps in the region of Salzburg in Austria. A cone karst close to the base level developed in the Neogene. Streams from the Alps fed the karst, resulting in the huge horizontal networks of which the Eisriesenwelt provides evidence. During the successive phases of upthrust, the levels of karstification, whether on the surface or deeper down, settled into a tier pattern, thus descending in stages from the base level. From the Pliocene era onwards, thanks to an increase in potential, alpine shafts replace the horizontal networks. The formation of these shafts is more pronounced during glaciation. The study of the Cosa Nostra - Bergerhöhle system developing 30 km of conduits on a gradient reaching almost 1 500 m provides a fairly full view of the karstification of this massif. It includes the horizontal levels developed in the Miocene and the Plio-Pleistocene, joined together by vertical sections. The most noteworthy features of the Tennengebirge, as in the neighboring massifs, lie first and foremost in the extreme thickness of the limestone which has recorded and immunized the differents steps of karstification. Secondly, the size of the networks can be, for the most part, accounted for by the contribution of allogenous waters from the streams of the Neogene and the glaciers of the Pleistocene. Generally sudden and unexpected, these flows of water engendered heavy loads (up to 600 m), simultaneously flooding several levels. To a lesser extent, the situation is similar today.

The Ile de Cremieu is a low limestone plateau on the western edge of the Jura. Due to its location in the foothills, the lobes of the Rhône glacier have covered it up, obliterating the surface karst. However, widespread evidence of anteglacial morphologies remains : paleokarst, cone karst, polygenic surface. Because of glacial plugging, access to the underground karst is limited. The main cavity is the cave of La Balme. Its initial development dates back to an early period. The morphological study has permitted the identification of several phases which go back to the Pleistocene and which are related to the Rhône glacier. The latter brought about modifications in the base level by supplying its merging waters as well as moraine material. These variations in the base level shaped the drainage structure. The underground glacial polishes are one of the noteworthy aspects recorded.

The massives of the Moucherotte and dent de Crolles belong to the northern French Prealps. They conceal large networks, respectively the Vallier cave and the Dent de Crolles. They were formed in the early Pliocene after the final orogenic phase and are in the form of horizontal conduits. The upthrust, which brought about the embanking of the Isère valley, left them in a perched position by taking away the basin which fed them. They were later, however, able to take advantage of waters from the Isère glacier during a part of the Pleistocene. The Vallier cave contains particularly glacio-karstic sediments of the lower Pleistocene, representing unique evidence of glaciation during this period. The vertical networks were put in place at the end of the Pliocene with the increase in karstification potential ; they underwent changes in the Pleistocene due to the effect of autochton and allogenous glaciers.

The second part of the work deals in general with the various forms and processes of karstification, sometimes going beyond the Alps. The study of cave deposits is a privileged tool in the understanding and reconstruction not only of the history of the networks but also the regional environment. The dating of speleothems by the U / Th method has very ofen given an age of over 350 000 years. The age of the networks is confirmed by the use of paleomagnetism which has yielded evidence of speleothems and glacio-karstic sediments anterior to 780 000 years. Anisotropic measurements of magnetic susceptibility have been used to distinguish the putting into place of glacio-karstic deposits by decantation.

Measurements of calcite rates lead to a typology of sediments based on their nature and carbonate content (rehandled weathered rocks, fluvial sands, carbonated varves, decantation clays). Granulometry confirms this differenciation by supplying precise details of transport and sedimentation modes : suspension and abrupt precipitation of clay, suspension and slow decantation of carbonated varves, suspension and rolling together with a variable sorting of sand and gravel. Mineralogical analyses oppose two types of detrital deposits. On the one hand, the rehandling of antequaternary weathered rocks extracted by the karst as a result of scouring during environmental destabilization and on the other hand, sediments characteristic of the ice age of the Pleistocene. The latter are not highly developed and their arrival in the karst is always later. Examination of heavy minerals, the morphoscopy of quartz grains and study of micromorphologies on thin blades provide precise details of conditions of evolution. The use of these methods of investigation allows for an accurate definition of the features of the evolution of the differents types of fillings, particularly speleothems, rehandled weathered rocks as well as carbonated varves. This wealth and complexity are emphasized by a detailed study of the sedimentary sequences of the Vallier cave and of the Bergerhöhle.
Speleogenesis is approached last of all in the light of above study. Emphasis is placed on the major part played by corrosion in the temporarily phreatic zone and on its many consequences (multi-level concept, simultaneous evolution of levels, origin of deep waterlogged karsts…).
Varia tions in the base level have induced karstification in contexts in which the potential was weak. These were followed by periods of increased potential to which were added the effects of glaciation. Perched horizontal levels belong to the first stages which ended in the early Pliocene, whereas alpine shafts developed in the second context. The role of structure and the parameters governing the shape of conduits (pits, meanders, canyons) are also dealt with. The different parts of the karst are borne in mind when dealing with the strength of karstic erosion during the ice age. It notably appears that it is weak on the crests and more or less non-existent in the deep parts of the karst which are liable to flooding. Finally, a preliminary analysis of an observation of neotectonic traces is presented.

Contribution to geomorphological and hydrogeological study of karst in Mediterranean environment: the Aït Abdi plateau (central limestone High Atlas, Maroc),PhD thesis, 1995, Perritaz, L.

The Ait Abdi karstic plateau is located in the heart of the calcareous High Atlas (32°N/6°W). With an area of 160 km2, it is situated between 2,200 and 3,000 meters above sea level, i.e. 800 meters above the nearest valleys and canyons. It consists of a large series of massive Bajocian limestones which form a large brachysyncline, the axial plane of which dips gently to the NE. These limestones overlie a thick series of Toarcian-Aalenian detritic sediments forming the regional aquiclude and the top of the half captive Middle Liasic aquifer. The plateau is limited both in the N and S by strong changes in dip to the vertical of the sedimentary layers (ejective thrusted anticlines), and in the W and E by deep canyons created by major rivers. Therefore the plateau is a totally isolated calcareous compartment, from both a morphologic and a hydrogeologic point of view.
The climate of this region is Mediterranean with an altitude modification: maximum rainfall occurs in winter and in spring, snow cover is not durable but sometimes important, storms are common for dry season in summer. The precipitations comprise only 500 to 700 mm/year (subhumide zone) and the effective evapotranspiration is approximately 400 mm/year, including the losses due to sublimation. The snow coefficient is 60 %. This means that the recharge of the aquifer, occurring almost entirely during snow melting, is limited, but the large bare surfaces of the plateau with typical well developed karst forms (dolines, poljes, dry valleys, holes) improve the infiltration rate (40%). The specific discharge is only 8.1 L/s/km2.
The morphologic peculiarity of this nival karst consist of a succession of small parallel and asymmetric dry valleys forming some "waves". For that reason, the French geomorphologist Couvreur termed these climate controlled features "karst en vagues". The role of wind and snow in the genesis of these forms is predominant. The most of time structure controlled plateau's poljes are quasi inactive today. All kinds of high mountain karren landforms are present on the plateau and prove the great role of snow role in the microforms genesis.
An ancient speleological network with vertical shafts occluded lower down suggest of ancient more humid climatic conditions. U-Th dating indicates ages between 3,200 and 220,000 years, or outside the range of the method (more than 400,000 years). The lateral flow is conducted by an interstrata network, inactive and dry in the upper part, or active and phreatic at the base, near the regional aquiclude, attesting three karstification phases.
The water discharges as typically karstic hillfoot springs, most of the time oversaturated and forming tufas. Large doleritic vertical dykes cut the plateau and form major drainpipes. The physical-chemical and chemical signature of these spring waters is quite different of the signature of other springs of this area, which discharge whether from small local Toarcian-Aalenian aquifers or from the huge semi confined karstic Middle Liasic aquifer. The plateau springs hydrodynamic response is characteristic for an elevated karstic aquifer with rapid flow. The aquifer geometry does not allow important reserves, but the mean discharge from all perennial springs (about 1 m3/s) is a precious resource for the population of this far area of the Atlas Mountains.

Prhistoire et karst littoral : la grotte Cosquer et les calanques mar_seillaises (Bouches-du-Rhne, France), 1996, Collinagirard, J.
The Cosquer Cave is a French palaeolithic painted and engraved cave (27000/ 18500 BP) which is located under the sea, in the urgonian limestones of Cap Morgiou ("Massif des Calanques"; Marseille). The en trance was submerged at the end of the last glacial stage and is presently 37 m under sea level. A synthesis about the Cosquer cave environmental studies is presented here. Structural studies show that cave planimetry is determined by Cap Morgiou fracturations (mainly NW/SE and N/S vertical faults). Through archaeological studies, a concretion breaking period can be dated between 27000 and 18000 BP. Geomorphological study of the continental shelf at the foot of the Cosquer cave area shows fossils shorelines at -36 m, -50/55 m, -90 m, -100 m depth. Radiocarbon datings from shells collected in 100m sediments yielded a date of 13 250 BP. Direct scuba diving observations and submarine clive profiles sketching show several eustatic stand-still levels between -36 m and the sea surface indicating a probable tectonic stability during the last 10000 years.

Bat Usage and Cave Management of Torgac Cave, New Mexico, 1998, Jagnow, D. H.
Torgac Cave, New Mexico, is a dolomite and gypsum cave that provides a stable winter hibernaculum for several species of bats, primarily Myotis velifer, the cave myotis; Corynorhinus (formerly Plecotus) townsendii, Townsends big-eared bat; and Myotis ciliolabrum, the western small-footed myotis. Occasional bat count studies between 1966 and 1996 indicate a total hibernating population ranging from 649 to 3951 individuals. Temperature and relative humidity studies have established the preferred habitat of each species. Through wise management by the Bureau of Land Management (BLM) and volunteers of the Southwestern Region, NSS, the population has remained stable over the past 30 years, even though the cave has been gated and off-season visitation has increased substantially. The construction of bat-friendly gates and the seasonal closure of Torgac Cave from November 1 to April 15 have helped maintain a stable bat population. It is recommended that the BLM continue the winter bat counts on an annual basis, and that studies be initiated of the summer bat flights.

Stacks and notches at Hopewell Rocks, New Brunswick, Canada, 1998, Trenhaile A. S. , Pepper D. A. , Trenhaile R. W. , Dalimonte M. ,
Spectacular rock formations have developed in coarse, poorly sorted conglomerates and arkosic sandstones at Hopewell Rocks in the Bay of Fundy, which has the largest tidal range in the world. The average gradient of the shore platform is 3.2 degrees, although it varies because of slight differences in rock hardness. Schmidt Rock Test Hammer measurements show that the rock is generally no more resistant in 16 stacks and in one stack-arch than in the adjacent platform and cliff. Most stacks, arch-tunnels and caves in this area result from dissection of the rock mass along prominent, well-spaced joint planes. Old photographs suggest that the stacks at Hopewell Rocks may have developed in the :Last 100 to 250 years. Notches are ubiquitous at the cliff foot, and they are responsible for the characteristic mushroom-shaped appearance of the stacks. Although there is no consistent relationship between the depth of notches on the seaward and landward sides of the stacks, the notches are at higher elevations on the seaward side. The deepest part of most notches is a little below the mean high tidal level, although several are up to 1 or 2 m below it, especially on the landward side of stacks. Stack morphology and notch depth change in a fairly predictable manner through time, as the stacks become increasingly isolated from the cliff. (C) 1998 John Wiley & Sons, Ltd

Flared slopes revisited, 1998, Twidale C. R. , Bourne J. A. ,
Flared slopes are smooth concavities caused by subsurface moisture-generated weathering in the scarp-foot zone of hillslopes or boulders. They are well represented in granitic terrains but also developed in other massive materials such as limestone, sandstone, dacite, rhyolite, and basalt, as well as other plutonic rocks. Notches, cliff-foot caves, and swamp slob are congeners of flared slopes. Though a few bedrock flares are conceivably caused by nivation or by a combination of coastal processes, most are two-stage or etch forms. Appreciation of the origin of these forms has permitted their use in the identification and measurement of recent soil erosion and an explanation of natural bridges. Their mode of development is also germane to the origin of the host inselberg or bornhardt and, indeed, to general theories of landscape evolution. But certain discrepancies have been noted concerning the distribution and detailed morphology of flared slopes. Such anomalies are a result of structural factors (sensu late), of variations in size of catchment and in degree of exposure, and of several protective factors. Notwithstanding, the original explanation of flared slopes stands, as do their wider implications

Fault and stratigraphic controls on volcanogenic massive sulphide deposits in the Strelley Belt, Pilbara Craton, Western Australia, 1998, Vearncombe S. , Vearncombe J. R. , Barley M. E. ,
Early Archaean, Fe-Zn-Cu volcanogenic massive sulphide deposits of the Strelley Belt, Pilbara Craton. occur at the top of a volcanic dominated sequence, at the interface of felsic volcanic rucks and siliceous laminites, beneath an unconformity overlain by elastic sedimentary rocks. The structure of the Sulphur Springs and Kangaroo Caves VMS deposits is relatively simple, with the present morphology reflecting original deposition rather than significant structural modification. The rocks have been tilted giving an oblique cross-sectional view of discordant high-angle, deep penetrating faults in the footwall, which splay close to the zones of voltcanogenic massive sulphide mineralization. Faults do not extend far into the overlying sedimentary cover, indicating their syn-volcanic and syn-mineralization timing. Both the Sulphur Springs and Kangaroo Caves sulphide deposits are located within elevated grabens in a setting similar to massive sulphide mineralization in modern back-are environments. Mineralization at Sulphur Springs and Kangaroo Caves is located at the edge of the grabens, at the site of intersecting syn-volcanic extensional faults.

Results 1 to 15 of 50
You probably didn't submit anything to search for