Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That permafrost table is the upper limit of permafrost [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for geochemical evolution (Keyword) returned 8 results for the whole karstbase:
Geochemistry and water dynamics: Application to short time-scale flood phenomena in a small Mediterranean catchment .1. Alkalis, alkali-earths and Sr isotopes, 1997, Benothman D, Luck Jm, Tournoud Mg,
We report major, trace elements and Sr isotope data for water samples taken regularly during a four-day-long September flood of a Mediterranean river, the Vene (Herault, S. France). The objective is to combine all these data into a dynamic model that describes the origin(s) and movements of waters and their loads. This river drains the runoff from a small, mainly carbonate, partly karstified watershed with Miocene and Jurassic lithologies. The watershed is also impacted by both agricultural and urban activities. Both the dissolved and the particulate loads were analyzed. Concentrations of the dissolved components show major remobilization of almost all elements during the first few hours of the flood (water treatment plants and aerosol scavenging), followed by a sharp concentration decrease. Some major species return to their previous summer values (Ca, HCO3) while others reach low 'background' levels (Na, K, Cl, SO4). Some trace elements (Rb, Sr, Cs) show similar behaviour but (Ba) appears somewhat unaffected. Trace element concentrations and ratios define two main periods (three in the suspended particulate matter). Ratios do not allow distinguishing between the three main sources for the dissolved load in the first period (Miocene, Jurassic, water treatment plants), but clearly show the Jurassic karst influence later on. The Sr-87/Sr-86 Of the suspended particulate matter is more variable and more radiogenic than in the dissolved phase. Variations in concentration ratios and Sr isotope composition in particulates indicate the large and variable contribution of Miocene silicates with some carbonate. However, there is a need for another component with [Rb]/[Sr] higher than bedrocks, internal or external to the watershed, possibly due to differential erosion. Dissolved Ca and Mg fluxes during the flood were calculated at 0.26 ton and 0.029 ton/km(2), respectively. Even though the carbonate nature of the watershed restricts variability in Sr isotope composition in the dissolved load, we distinguish several endmembers: seawater(approximate to marine rain), Miocene marls, Jurassic limestones, water treatment plants (and possibly another attributable to fertilizers). Combined with major and trace element variational Sr isotope fluctuations indicate time-varying proportions of different water endmembers at the outflow and suggest a general dynamic model. Based on PCA (principal component analysis), a 3D representation allows to visualize the geochemical evolution of the Vene waters. In particular, Sr isotopes clearly indicate that the inflow of karstic waters during the flood was not continuous but occurred as a series of marked oscillations between flowing waters with chemical signature of Miocene lithologies and increasing flushes of deeper waters that interacted with Jurassic lithologies. (C) 1997 Elsevier Science B.V

Geochemical evolution of a karst stream in Devils Icebox Cave, Missouri, USA, 1997, Wicks Carol M. , Engeln Joseph F. ,
A 3.7 km flowpath along the main stream channel in Devils Icebox Cave, Boone County, Missouri, was sampled on 23 January, 23 March and 18 September 1994. In January 1994, the water was oversaturated with respect to both calcite and dolomite, and only minor compositional changes were observed along the flowpath. In March 1994, the water was oversaturated with respect to calcite but undersaturated with respect to dolomite. Using a mass-balance approach, the composition of the stream water at downstream locations was predicted by dissolution of dolomite (a maximum of 0.16 mmol s-1) and by a minor amount of calcite precipitation (a maximum of 0.03 mmol s-1). In September 1994, there were increases in the Mg, Ca, and total inorganic carbon (TIC) mass fluxes that were due to the dissolution of dolomite (SIdolomiteSI is saturation index) and calcite (SIcalcite2 of the water should decrease downstream; however, we found an increase in the partial pressure of CO2 along the stream. The source of this additional CO2 is thought to be microbial degradation of bat guano. The decomposition of bat guano appeared to change the composition of the stream water during the period the bats are in the cave, and this change was reflected in the composition of the stream water collected in September 1994. Based on the length of the flowpath and on the average velocity of the water along the flowpath, the travel time of water in this karst stream is less than 4 days. The reactions that control the chemistry of the karst water must be those with equally short characteristic times: the dissolution of dolomite and calcite, CO2 exchange, and microbial degradation of organic matter

Preliminary investigations of seasonal changes in the geochemical evolution of the Logsdon River, Mammoth Cave, Kentucky, 1997, Anthony D. M. , Groves C. , Meiman J.

Seasonal Effects on the Geochemical Evolution of the Logsdon River, Mammoth Cave, Kentucky., 1998, Anthony, Darlene M. , Ms

The following research describes the collection and evaluation of geochemical data from the Logsdon River, an open-flow conduit that drains a portion of the Turnhole Spring drainage basin within the Mammoth Cave karst aquifer of south-central Kentucky. This spatial survey of nearly 10 km of continuous base-level conduit included seasonal sampling of carbon dioxide partial pressures (PCO2), dissolved ions, and saturation indices for calcite (SIcal). The highest PCO2 are found at the upstream site closest to the Sinkhole Plain recharge area, which creates undersaturated conditions. Rapid outgassing of CO2 into the cave atmosphere creates oversaturated conditions for several thousand meters. This change in chemistry results in the accumulation of travertine in these areas. A boost in PCO2 roughly half-way through the flow path returns the water to slightly undersaturated conditions. The most likely source for additional CO2 is in-cave organic decay, as the boost also occurs during winter months when microbial activity in the soil is at a minimum. A general decline in Ca2+, Mg2+, and HCO3- concentrations occurred over the distance through the Logsdon River conduit. This decline may reflect a diluting of water by localized inputs from the Mammoth Cave Plateau and precipitation of travertine along the flow path. Although values for all parameters are greater in summer than winter, the trend in evolution is similar for both seasonal extremes.
The nature of the transition from summer to winter conditions in the aquifer was investigated by way of an intensive study of the geochemistry at the Logsdon River monitoring well. The relationship between conductivity (spC) and pH was evaluated during both seasons in an attempt to predict the activity of hydrogen for any given water sample, based on continuous spC measurements at the well. Data collected during the 1997-98 seasonal transitions supported a single, nonlinear regression equation that may represent two distinct seasonal regimes.

Preliminary investigations of seasonal changes in the geochemical evolution of the Logdson River, Mammoth Cave, Kentucky, 2003, Anthony D. M. , Groves C. , Meiman J.

Many geochemical studies have been made of karst waters worldwide. Most data that provide the framework for our current understanding of the evolution of karst waters have come from sampling at discrete times and locations, such as springs or wells. Relatively few studies have been made of the geochemical evolution of groundwater as it moves through an open flow system. This paper addresses the seasonal changes in the geochemistry of the Logsdon River conduit as it passes through nearly 10km of the carbonate aquifer of south-central Kentucky .
The most important control on the ability of groundwaters to dissolve limestone is their carbon dioxide pressure, which is influenced by a variety of complex interactions with soil, bedrock, and in-cave organic decay. The fieldwork involved in this research combines seasonal sampling of the entire traversable length of the Logsdon River conduit, as well as continuous monitoring of the chemistry at key points within the flow system. Preliminary results of this study indicate both seasonal changes in CO 2 , transport through the Mammoth Cave karst aquifer during summer and winter conditions, along with significant geochemical changes as the water moves through a distance of 10km.

Soil and karst aquifer hydrological controls on the geochemical evolution of speleothem-forming drip waters, Crag Cave, southwest Ireland, 2003, Tooth Anna F. , Fairchild Ian J. ,
In recent years there has been increased interest in cave speleothems as archives of palaeoclimate. Monitoring of rainfall and soil and karst water chemistries was performed at Crag Cave, Castleisland, Co. Kerry, southwest Ireland, in August 1997 and January 1998 in order to understand temporal and spatial variations in karst water hydrology and chemistry and their implications for interpreting the potential palaeohydrological signal preserved by speleothems at this site. Temporal variations in karst water drip rates and geochemistry allow drips to be classified by hydrological response to rainfall and the associated processes of dilution, piston flow, source change and prior calcite precipitation during aquifer throughflow. Evolution from soil matrix and preferential flow solutions has also been determined to exert an important control on karst water chemistries. As a result of these findings we present hydrogeochemical models and plumbing diagrams that delineate the controls on karst water evolution at a number of sampling locations within the cave at this site. We propose that a palaeohydrological signal may be recorded by Crag Cave speleothems that may be interpreted via the study of Mg/Ca ratios in speleothems linked to monitoring of modern drip water chemistry

Isotopic and geochemical evolution of ground and surface waters in a karst dominated geological setting: A case study from Belize, Central America, 2004, Marfia A. M. , Krishnamurthy R. V. , Atekwana E. A. , Panton W. F. ,
Analysis of stable isotopes and major ions in groundwater and surface waters in Belize, Central America was carried out to identify processes that may affect drinking water quality. Belize has a subtropical rainforest/savannah climate with a varied landscape composed predominantly of carbonate rocks and clastic sediments. Stable oxygen (delta(18)O) and hydrogen (deltaD) isotope ratios for surface and groundwater have a similar range and show high d-excess (10-40.8parts per thousand). The high d-excess in water samples suggest secondary continental vapor flux mixing with incoming vapor from the Caribbean Sea. Model calculations indicate that moisture derived from continental evaporation contributes 13% to overhead vapor load. In surface and groundwater, concentrations of dissolved inorganic carbon (DIC) ranged from 5.4 to 112.9 mg C/l and delta(13)C(DIC) ranged from -7.4 to -17.4parts per thousand. SO42, Ca2 and Mg2 in the water samples ranged from 2-163, 2-6593 and 2-90 mg/l, respectively. The DIC and delta(13)C(DIC) indicate both open and closed system carbonate evolution. Combined delta(13)C(DIC) and Ca2, Mg2 SO42- suggest additional groundwater evolution by gypsum dissolution and calcite precipitation. The high SO42- content of some water samples indicates regional geologic control on water quality. Similarity in the range of delta(18)O, deltaD and delta(13)C(DIC) for surface waters and groundwater used for drinking water supply is probably due to high hydraulic conductivities of the karstic aquifers. The results of this study indicate rapid recharge of groundwater aquifers, groundwater influence on surface water chemistry and the potential of surface water to impact groundwater quality and vise versa. (C) 2003 Elsevier Ltd. All rights reserved

Geochemical evolution of groundwater in the unsaturated zone of a karstic massif, using the PCO2SIc relationship, 2012, Peyraube N. , Lastennet R. , Denis A.

In karstic environments, groundwater is strongly influenced by CO2 partial pressure variations of air present in the infiltration zone of these aquifers. In order to characterize the geochemical changes in groundwater as it moves through the infiltration zone, we monitored various rising springs in the perched karstic aquifer of Cussac (Dordogne, France), and measured the CO2 partial pressure in air of a nearby cavity (the Cussac Cave) for 24 months. Our method is based on the relationship between the saturation index with respect to calcite (SIc) and the CO2 partial pressure at atmospheric equilibrium with water. We distinguished a value for this last parameter when water is at equilibrium with respect to calcite (SIc = 0) called saturation CO2 partial pressure. The use of this parameter can provide information on flow conditions and relationships between water, air, and rock. Cussac aquifer is a suitable area to apply these methods because of its small size, numerous springs, and a cave that provides data for CO2 partial pressure condition inside the massif. Results show that most of the calcium-carbonate mineralization is acquired in the epikarst followed by a precipitation phase in the upper part of the infiltration zone. Groundwater reaches the saturated zone with some degree of saturation depending on CO2 partial pressure variations in air inside the massif.

Results 1 to 8 of 8
You probably didn't submit anything to search for