MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_left.php on line 5
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That pyrite is iron sulfide mineral (fes2) also known as iron pyrites and fool's gold. pyrite occurs in trace amounts in many sedimentary rocks. it may be locally common in dark carbonaceous limestone and in thin non-carbonate beds such as shales, coals and wayboards. pyrite may break down spontaneously, with or without bacterial mediation, to form sulfates, particularly sulphuric acid, that may be involved in early speleogensis [9].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_right.php on line 7
What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for highstand (Keyword) returned 25 results for the whole karstbase:
Showing 1 to 15 of 25
VOID-FILLING DEPOSITS IN KARST TERRAINS OF ISOLATED OCEANIC ISLANDS - A CASE-STUDY FROM TERTIARY CARBONATES OF THE CAYMAN-ISLANDS, 1992,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Jones B. ,
Caves, fossil mouldic cavities, sinkholes and solution-widened joints are common in the Cayman and Pedro Castle members of the Bluff Formation (Oligocene Miocene) on Grand Cayman and Cayman Brac because they have been subjected to repeated periods of karst development over the last 30 million years. Many voids contain a diverse array of sediments and/or precipitates derived from marine or terrestrial environs, mineral aerosols, and groundwater. Exogenic sediment was transported to the cavities by oceanic storm waves, transgressive seas, runoff following tropical rain storms and/or in groundwater. At least three periods of deposition were responsible for the occlusion of voids in the Cayman and Pedro Castle members. Voids in the Cayman Member were initially filled or partly filled during the Late Oligocene and Early Miocene. This was terminated with the deposition of the Pedro Castle Member in the Middle Miocene. Subsequent exposure led to further karst development and void-filling sedimentation in both the Cayman and Pedro Castle members. Speleothems are notably absent. The void-filling deposits formed during these two periods, which were predominantly marine in origin, were pervasively dolomitized along with the host rock 2 5 million years ago. The third period of void-filling deposition. after dolomitization of the Bluff Formation, produced limestone, various types of breccia, terra rossa, speleothemic calcite and terrestrial oncoids. Most of these deposits formed since the Sangamon highstand 125 000 years ago. Voids in the present day karst are commonly filled or partly filled with unconsolidated sediments. Study of the Bluff Formation of Grand Cayman and Cayman Brac shows that karst terrains on isolated oceanic islands are characterized by complex successions of void-filling deposits that include speleothems and a variety of sediment types. The heterogenetic nature of these void-filling deposits is related to changes in sea level and climatic conditions through time

THE EVOLUTION OF THE MIDDLE TRIASSIC (MUSCHELKALK) CARBONATE RAMP IN THE SE IBERIAN RANGES, EASTERN SPAIN - SEQUENCE STRATIGRAPHY, DOLOMITIZATION PROCESSES AND DYNAMIC CONTROLS, 1993,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Lopezgomez J. , Mas R. , Arche A. ,
The Upper Permian-Triassic strata of the SE Iberian Ranges, eastern Spain, display the classic Germanic-type facies of Buntsandstein, Muschelkalk and Keuper. The Muschelkalk is represented by two carbonate units with a siliciclastic-evaporitic unit in between. Their ages range from Anisian to basal Carnian (Middle Triassic to base of the Upper Triassic). The carbonate units represent ramps that evolved during the early thermal subsidence period which succeeded the first rift phase. Seven facies have been distinguished, representing shoals, tidal flats, organic buildups and lagoons, as well as a karst horizon in the lower carbonatic unit. Most of the carbonates were dolomitised. Three processes of dolomitization are invoked: mixing waters, penecontemporaneous seepage refluxion, and deep burial. The top of the Buntsandstein and the Muschelkalk facies are subdivided into two depositional sequences, including lowstand, transgressive and highstand systems tracts, with superimposed tectonic and eustatic controls

GEOLOGY AND KARST GEOMORPHOLOGY OF SAN-SALVADOR ISLAND, BAHAMAS, 1995,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Mylroie J. E. , Carew J. L. ,
The exposed carbonates of the Bahamas consist of late Quaternary limestones that were deposited during glacio-eustatic highstands of sea level. Each highstand event produced transgressive-phase, stillstand-phase, and regressive-phase units. Because of slow platform subsidence, Pleistocene carbonates deposited on highstands prior to the last interglacial (oxygen isotope substage 5e, circa 125,000 years ago) are represented solely by eolianites. The Owl's Hole Formation comprises these eolianites, which are generally fossiliferous pelsparites. The deposits of the last interglacial form the Grotto Beach Formation, and contain a complete sequence of subtidal intertidal and eolian carbonates. These deposits are predominantly oolitic. Holocene deposits are represented by the Rice Bay Formation, which consists of intertidal and eolian pelsparites deposited during the transgressive-phase and stillstand-phase of the current sea-level highstand. The three formations are separated from one another by well-developed terra-rossa paleosols or other erosion surfaces that formed predominantly during intervening sea-level lowstands. The karst landforms of San Salvador consist of karren, depressions, caves, and blue holes. Karren are small-scale dissolutional etchings on exposed and soil-covered bedrock that grade downward into the epikarst, the system of tubes and holes that drain the bedrock surface. Depressions are constructional features, such as swales between eolian ridges, but they have been dissolutionally maintained. Pit caves are vertical voids in the vadose zone that link the epikarst to the water table. Flank margin caves are horizontal voids that formed in the distal margin of a past fresh-water lens; whereas banana holes are horizontal voids that developed at the top of a past fresh-water lens, landward of the lens margin. Lake drains are conduits that connect some flooded depressions to the sea. Blue holes are flooded vertical shafts, of polygenetic origin, that may lead into caves systems at depth. The paleokarst of San Salvador is represented by flank margin caves and banana holes formed in a past fresh-water lens elevated by the last interglacial sea-level highstand, and by epikarst buried under paleosols formed during sea-level lowstands. Both carbonate deposition and its subsequent karstification is controlled by glacio-eustatic sea-level position. On San Salvador, the geographic isolation of the island, its small size, and the rapidity of past sea level changes have placed major constraints on the production of the paleokarst

Facies differentiation and sequence stratigraphy in ancient evaporite basins - An example from the basal Zechstein (Upper Permian of Germany), 1999,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Steinhoff I. , Strohmenger C. ,
Due to excellent preservation, the Werra Anhydrite (Al), the upper member of the Upper Permian Zechstein cycle I (Ist cycle, Z1), is readily studied in terms of the distribution of sulfate facies and sequence stratigraphy that can be interpreted from these facies. In this study cores taken from seven wells in the Southern Zechstein Basin were examined for their sedimentary structures and various petrographic features. Facies interpretation and depositional sequences are based on detailed examination of core material. Four main facies environments have been identified: (I) supratidal (II) intertidal (III) shallow subtidal, and (IV) deeper (hypersaline) subtidal. These are further subdivided into 10 subfacies types: (1) karst and (2) sabkha within the supratidal environment (I), (3) algal tidal-flat, (4) tidal flat and (5) beach deposit within the intertidal environment (II), (6) salina, and (7) sulfate arenites within the shallow subtidal enviromnent (III). The (8) slope subfacies type commonly associated with (9) turbidites and the (10) basin subfacies type subdivide the deeper subtidal environment (IV). Vertical stacking patterns of these facies and subfacies types reveal the sequence stratigraphic development of the sulfate cycles in response to sea-level and salinity fluctuations. The lower Werra Anhydrite (belonging to Zechstein Sequence ZS2) is characterized by a transgressive systems tract (IST) overlying the transgressive surface of Zechstein Sequence ZS2 within the Al-underlying upper Zechstein Limestone (Cal). The TST of the AT is several tens of meters thick in platform areas, where it is built up by sulfate arenites and swallow-tail anhydrite-after-gypsum, and thins out to a few meters of thickness toward the condensed basinal section, where laminites ('Linien-Anhydrit') are predominant. Most of the Al succession consists of three relatively thick parasequences belonging to the highstand systems tract (HST) that shows typical prograding sets. Enhanced platform Buildup, including sulfate arenites, salina deposits, intertidal sediments, and sabkha precipitation as well as turbidite shedding off the platforms produced marginal ''sulfate walls' up to 400 m thick as platform to slope portions of the Werra Anhydrite. Seaward, the Al thins to a few tens of meters of laminated sulfate basin muds. Increasingly pronounced Al topography during highstand narrowed the slope subfacies belt parallel to the platform margin This contrasts with the broad but considerably thinner slope deposits of transgressive times with much shallower slopes. The ensuing sea-level lowstand is reflected by a sequence boundary on top of the karstified Al-platform and a lowstand wedge (Zechstein Sequence ZS3) overlying portions of the slope and basinal subfacies of the Al highstand systems tract Beyond the lateral limits of the lowstand wedge, the sequence boundary merges with the transgressive surface of ZS3, shown by the lithologic change from the Al anhydrites to the overlying carbonates of the Stassfurt Carbonates ('Haupt Dolomit' Main Dolomite, Ca2). The Basal Anhydrite (A2), which overlies and seals the carbonate reservoir of the Ca2, can also be subdivided into systems tracts by means of facies analysis. It is, however, much less complex than the Al and is comprised almost exclusively of a transgressive systems tract of Zechstein Sequence ZS4

A review of the last interglacial sea-level highstand (oxygen isotope substage 5e): Duration, magnitude and variability from Bahamian Data, 1999,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Carew J. L. , Mylroie J. E.

Sequence stratigraphy of the type Dinantian of Belgium and its correlation with northern France (Boulonnais, Avesnois), 2001,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Hance L. , Poty E. , Devuyst F. X. ,
The relative influences of local tectonics and global eustasy in the architecture of the sedimentary units of the Namur-Dinant Basin (southern Belgium) are determined. Nine third-order sequences are recognised. During the Lower Tournaisian (Hastarian and lower Ivorian) a homoclinal ramp extended from southern Belgium through southern England (Mendips) and into southern Ireland. From the upper Ivorian to the lower Visean rapid facies changes occurred due to progradation and increasing prominence of Waulsortian mudmounds. Progradation gradually produced a situation in which inner shelf facies covered the Namur (NSA), Condroz (CSA) and southern Avesnes (ASA) sedimentation areas, whereas outer shelf facies were restricted to the Dinant sedimentation area (DSA). During the middle and late Viscan a broad shelf was established from western Germany to southern Ireland. Because the shelf built up mainly by aggradation, parasequences can be followed over a large area. An early phase of Variscan shortening is perceptible during the Livian. The stratigraphic gap between the first Namurian sediments (E2 Goniatite Zone) and the underlying Visean varies from place to place, but is more important in the north. Sequence 1 straddles the Devonian-Carboniferous boundary. It starts with a transgressive system tract (TST) corresponding to the Etroeungt Formation (Fm.) and its lateral equivalent (the upper part of the Comb lain-au-Pont Fin.), and to the lower member of the Hastiere Fin. The highstand system tract (HST) is represented by the middle member of the Hastiere Fin. which directly overlies Famennian silicielastics in the northern part of the NSA. Sequence 2 starts abruptly, in the DSA and CSA, with the upper member of the Hastiere Fin. as the TST. The maximum flooding surface (MFS) lies within the shales of the Pont d'Arcole Fin., whereas the thick-bedded crinoidal limestones of the Landelies Fm. form the HST. Sequence 3 can clearly be recognised in the DSA and CSA. Its TST is formed by the Maurenne Fm. and the Yvoir Fm. in the northern part of the DSA and by the Maurenne Fm. and the Bayard Fin. in the southern part of the DSA. The Ourthe Fin. represents the HST. Growth of the Waulsortian mudmounds started during the TST. Sequence 4 shows a significant change of architecture. The TST is represented by the Martinrive Fm. in the CSA and the lower part of the Leffe Fin. in the DSA. The HST is marked by the crinoidal rudstones of the Flemalle Member (Mbr.) and the overlying oolitic limestones of the Avins Mbr. (respectively lower and upper parts of the Longpre Fin.). These latter units prograded far southwards, producing a clinoform profile. Sequence 5 is only present in the DSA and in the Vise sedimentation area (VSA). The TST and the HST form most of the Sovet Fm. and its equivalents to the south, namely, the upper part of the Leffe Fm. and the overlying Molignee Fm. In the VSA, the HST is locally represented by massive grainstones. Sequence 6 filled the topographic irregularities inherited from previous sedimentation. In the CSA, NSA and ASA the TST is formed by the peritidal limestones of the Terwagne Fm. which rests abruptly on the underlying Avins Nibr. (sequence 4) with local karst development. In the DSA, the TST corresponds to the Salet Fin. and, further south, to the black limestones of the strongly diachronous Molignee Fin. Over the whole Namur-Dinant Basin, the sequence ends with the thick-bedded packstones and grainstones of the Neffe Frn. as the HST. Sequence 7 includes the Lives Fm. and the lower part of the Grands-Malades Fm. (Seilles Mbr. and its lateral equivalents), corresponding respectively to the TST and HST. Sequence 8 corresponds to the Bay-Bonnet Mbr. (TST), characterised by stromatolitic limestones. The HST corresponds to the Thon-Samson Mbr. Sequence 9 is the youngest sequence of the Belgian Dinantian in the CSA and DSA. It includes the Poilvache Nibr. (TST, Bonne Fm.) and the Anhee Fm. (HST). These units are composed of shallowing-upward parasequences. The uppermost Visean and basal Namurian are lacking in southern Belgium where sequence 9 is directly capped by Namurian E2 silicielastics. In the VSA, sequence 9 is well developed

Water-upwelling pipes and soft-sediment-deformation structures in lower Pleistocene calcarenites (Salento, southern Italy), 2001,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Massari F. , Ghibaudo G. , D'alessandro A. , Davaud E. ,
A thin sedimentary blanket, consisting mostly of subtidal, unconformity-bounded calcarenite units, was deposited in the small Novoli graben (Apulian foreland, southern Italy) in Pliocene-Pleistocene time. In a limited part of the study area the lower Pleistocene 'Calcarenite di Gravina,' forming the thicker part of this blanket, is crossed by continuous to discontinuous cylindrical pipes as much as 12 m high, most commonly consisting of stacked concave- upward laminae, locally grading upward into soft-sediment-deformation features and large dishes. The evidence favors an origin linked to upwelling of overpressured groundwater from a large karstic reservoir hosted in the Mesozoic carbonate rocks; the reservoir periodically developed a relatively high hydrostatic head due to Tertiary to Pleistocene cover acting as an aquitard or aquiclude. As a result, submarine springs were generated, the activity of which was primarily controlled by relative sea-level fluctuations. It is suggested that the pipes were located in those points where the hydrostatic pressure was sufficient to fluidize the overlying sediment and could be released without notably affecting the surrounding sediments. Some pipes cross calcarenitic infills of karstic sinkholes developed in the underlying units, whereas others follow the course of vertical to high-angle extensional synsedimentary tectonic fractures generated when the calcarenites were still in an unconsolidated to semiconsolidated state. The former relationships suggest that vertical routes of water upwelling during highstand of base level commonly coincided with axes of vadose solution during base-level lowstand; the latter suggest that opening of fractures enhanced the connection of the deep aquifer with the surface, hence intensifying water upwelling. We think that fluidization along the fractures was not hindered by the partially coherent state, and that pipes with a cylindrical geometry could form in spite of the planarity of the fractures. The formation of the pipes and their internal structure of stacked concave-upward laminae is thought to be consistent with a process of fluidization due to through-flowing waters. We believe that essential in this process is the role of upward-migrating transient water-filled cavities, akin to the voidage waves (Hassett's [1961a, 1961b] parvoids) experimentally reproduced by several authors in liquid fluidized beds, and regarded as true instability phenomena of a fluidized suspension occurring above minimum fluidization velocity. It is suggested that the process is akin to the production of the dish structure. It consists of the filling of transient, upward-migrating, water-filled cavities through steady fallout of particles from the cavity roof, their redeposition in a more consolidated state, and subsidence of the roof due to water seepage upward from the cavity. The process was accompanied by segregation of grains according to their size and density, as well by elutriation of finest particles, and led to a new pattern of sediment texture, packing, and fabric with respect to the surrounding calcarenites

Origin of atoll lagoons, 2001,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Purdy Edward G. , Winterer Edward L. ,
A database of 301 atolls from the Pacific, Indian, and Atlantic Oceans has been analyzed with respect to factors governing maximum atoll lagoon depth. Statistically significant correlations between maximum atoll lagoon depth and both atoll area and present-day rainfall are viewed as the combined effect of paleorainfall precipitation and catchment area in contributing to overall atoll morphology. This interpretation is supported by the gross saucer-shaped morphology of several of the Lau group of the Fiji Islands, and the subsurface Cretaceous Golden Lane atoll of Mexico, where evidence of reef rim construction is lacking but evidence for significant solution relief is compelling. The contribution of reefs to atoll rim construction appears to be limited generally to [~]10 m, leaving more than 20 m of relief to be explained at most atolls. At a number of these, the last interglacial highstand surface is [~]15-20 m beneath Holocene rim sediments. Subsidence rates of even 5 cm/ k.y. do not suffice to explain the subsea depth of this unconformity, suggesting the dominating influence of solution on relief expression. Calculations of solution rates relative to the residence time of sea level below given depths during the past 700 k.y. suggest that the observed atoll relief is in part inherited from more than one Pleistocene, or perhaps earlier, glacial stage. Whatever the precise time of origin, the data available strongly suggest that atoll morphology is solution determined rather than growth predicated

The sequence stratigraphy, sedimentology, and economic importance of evaporite-carbonate transitions: a review, 2001,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Sarg J. F. ,
World-class hydrocarbon accumulations occur in many ancient evaporite-related basins. Seals and traps of such accumulations are, in many cases, controlled by the stratigraphic distribution of carbonate-evaporite facies transitions. Evaporites may occur in each of the systems tracts within depositional sequences. Thick evaporite successions are best developed during sea level lowstands due to evaporative drawdown. Type 1 lowstand evaporite systems are characterized by thick wedges that fill basin centers, and onlap basin margins. Very thick successions (i.e. saline giants) represent 2nd-order supersequence set (20-50 m.y.) lowstand systems that cap basin fills, and provide the ultimate top seals for the hydrocarbons contained within such basins.Where slope carbonate buildups occur, lowstand evaporites that onlap and overlap these buildups show a lateral facies mosaic directly related to the paleo-relief of the buildups. This facies mosaic, as exemplified in the Silurian of the Michigan basin, ranges from nodular mosaic anhydrite of supratidal sabkha origin deposited over the crests of the buildups, to downslope subaqueous facies of bedded massive/mosaic anhydrite and allochthonous dolomite-anhydrite breccias. Facies transitions near the updip onlap edges of evaporite wedges can provide lateral seals to hydrocarbons. Porous dolomites at the updip edges of lowstand evaporites will trap hydrocarbons where they onlap nonporous platform slope deposits. The Desert Creek Member of the Paradox Formation illustrates this transition. On the margins of the giant Aneth oil field in southeastern Utah, separate downdip oil pools have accumulated where dolomudstones and dolowackestones with microcrystalline porosity onlap the underlying highstand platform slope.Where lowstand carbonate units exist in arid basins, the updip facies change from carbonates to evaporite-rich facies can also provide traps for hydrocarbons. The change from porous dolomites composed of high-energy, shallow water grainstones and packstones to nonporous evaporitic lagoonal dolomite and sabkha anhydrite occurs in the Upper Permian San Andres/Grayburg sequences of the Permian basin. This facies change provides the trap for secondary oil pools on the basinward flanks of fields that are productive from highstand facies identical to the lowstand dolograinstones. Type 2 lowstand systems, like the Smackover Limestone of the Gulf of Mexico, show a similar relationship. Commonly, these evaporite systems are a facies mosaic of salina and sabkha evaporites admixed with wadi siliciclastics. They overlie and seal highstand carbonate platforms containing reservoir facies of shoalwater nonskeletal and skeletal grainstones. Further basinward these evaporites change facies into similar porous platform facies, and contain separate hydrocarbon traps.Transgressions in arid settings over underfilled platforms (e.g. Zechstein (Permian) of Europe; Ferry Lake Anhydrite (Cretaceous), Gulf of Mexico) can result in deposition of alternating cyclic carbonates and evaporites in broad, shallow subaqueous hypersaline environments. Evaporites include bedded and palmate gypsum layers. Mudstones and wackestones are deposited in mesosaline, shallow subtidal to low intertidal environments during periodic flooding of the platform interior.Highstand systems tracts are characterized by thick successions of m-scale, brining upward parasequences in platform interior settings. The Seven Rivers Formation (Guadalupian) of the Permian basin typifies this transition. An intertonguing of carbonate and sulfates is interpreted to occur in a broad, shallow subaqueous hypersaline shelf lagoon behind the main restricting shelf-edge carbonate complex. Underlying paleodepositional highs appear to control the position of the initial facies transition. Periodic flooding of the shelf interior results in widespread carbonate deposition comprised of mesosaline, skeletal-poor peloid dolowackestones/mudstones. Progressive restriction due to active carbonate deposition and/or an environment of net evaporation causes brining upward and deposition of lagoonal gypsum. Condensed sections of organic-rich black lime mudstones occur in basinal areas seaward of the transgressive and highstand carbonate platforms and have sourced significant quantities of hydrocarbons

Karst genetic model for the French Bay Breccia deposits, San Salvador, Bahamas., 2001,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Florea L. , Mylroie J. , Carew J.
On the Island of San Salvador in the Bahama archipelago 30 breccia deposits can be found along the French Bay sea cliffs on the southeastern coast of the island. Breccia deposits of this type have not been observed on any other location on the island. These deposits have traditionally been interpreted as paleo-talus deposits from an eroding sea cliff formed on a transgressive eolianite deposited at the start of the oxygen isotope substage 5e sea-level highstand (ca. 125,000 years before present). New evidence supports a karst genesis. A survey of several deposits revealed a vertical restriction of +2 to +7 meters above sea level consistent with flank margin caves developed during the substage 5e still-stand. The morphologies of the features were found to be globular and contain distinct caliche boundaries, overhung lips, and smooth undulating bases. Petrographic results support a model in which voids are created and then infilled with a soil breccia. It can be concluded from these results that the deposits reflect qualities of a lithified soil breccia filling in breached flank margin caves. karst breccia, paleokarst, San Salvador

Seismic stratigraphy of Late Quaternary deposits from the southwestern Black Sea shelf: evidence for non-catastrophic variations in sea-level during the last ~10[punctuation space]000 yr, 2002,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Aksu Ae, Hiscott Rn, Yasar D, Isler Fi, Marsh S,
Detailed interpretation of single channel seismic reflection and Huntec deep-tow boomer and sparker profiles demonstrates that the southwestern Black Sea shelf formed by a protracted shelf-edge progradation since the Miocene-Pliocene. Five seismic-stratigraphic units are recognized. Unit 1 represents the last phase of the progradational history, and was deposited during the last glacial lowstand and Holocene. It is divided into four subunits: Subunit 1A is interpreted as a lowstand systems tract, 1B and 1C are interpreted as a transgressive systems tract, and Subunit 1D is interpreted as a highstand systems tract. The lowstand systems tract deposits consist of overlapping and seaward-prograding shelf-edge wedges deposited during the lowstand and the subsequent initial rise of sea level. These shelf-edge wedges are best developed along the westernmost and easternmost segments of the study area, off the mouths of rivers. The transgressive systems tract deposits consist of a set of shingled, shore-parallel, back-stepping parasequences, deposited during a phase of relatively rapid sea-level rise, and include a number of prograded sediment bodies (including barrier islands, beach deposits) and thin veneers of seismically transparent muds showing onlap onto the flanks of older sedimentary features. A number of radiocarbon dates from gravity cores show that the sedimentary architecture of Unit 1 contain a detailed sedimentary record for the post-glacial sea-level rise along the southwestern Black Sea shelf. These data do not support the catastrophic refilling of the Black Sea by waters from the Mediterranean Sea at 7.1 ka postulated by [Ryan, Pitman, Major, Shimkus, Maskalenko, Jones, Dimitrov, Gorur, Sakinc, Yuce, Mar. Geol. 138 (1997) 119-126], [Ryan, Pitman, Touchstone Book (1999) 319 pp.], and [Ballard, Coleman, Rosenberg, Mar. Geol. 170 (2000) 253-261]

Blow Hole Cave: An unroofed cave on San Salvador Island, the Bahamas, and its importance for detection of paleokarst caves on fossil carbonate platforms, 2002,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Bosá, K Pavel, Mylroie John E. , Hladil Jindrich, Carew James L. , Slaví, K Ladislav

The comparative study of a Quaternary carbonate platform (San Salvador Island, the Bahamas) and a Devonian Carbonate Platform (Krásná Elevation, Moravia) indicates a great similarity in karst evolution. Caves on both sites are interpreted as flank margin caves associated with a freshwater lens and halocline stabilised during sea-level highstands. The sedimentary fill of both caves is genetically comparable - beach and aeolian sediments with bodies of breccias.


Temporal evolution of tertiary dolostones on Grand Cayman as determined by Sr-87/Sr-86, 2003,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Jones B. , Luth R. W. ,
On the Cayman Islands, the Tertiary Bluff Group (Brac Formation, Cayman Formation, Pedro Castle Formation) is onlapped and overlain by the Pleistocene Ironshore Formation. On Grand Cayman, the Brac Formation and Cayman Formation are formed of finely crystalline dolostones; whereas the Pedro Castle Formation is formed of finely crystalline dolostones, dolomitized limestones, and limestones. No dolomite has been found in the Ironshore Formation. Dolostones in the Bluff Group, which retained their original depositional textures and lack evidence of any recrystallization, are formed of small (typically 5-15 mum long) interlocking, euhedral dolomite crystals. Dolomite cement is present in the Brac Formation and Cayman Formation but is very rare in the Pedro Castle Formation. Most of the dolomite crystals are characterized by oscillatory zoning with alternating zones of low-Ca calcian dolomite and high-Ca calcian dolomite. Grand Cayman is ideal for assessing the temporal evolution of Tertiary dolostones because the dolostones are young, have not been recrystallized, and are geographically isolated by the deep oceanic waters around the island. Interpretation of 158 new Sr-87/Sr-86 ratios from the dolostones in the Bluff Group indicate that the succession underwent three time-transgressive phases of dolomitization during the Late Miocene, the Late Pliocene, and Pleistocene. Petrographically similar dolomite was produced during each phase of dolomitization that was mediated by the same type of fluid and the same general conditions. Dolomitization was part of a dynamic cycle of processes that followed major lowstands. Karst development during the lowstands preconditioned the limestones for dolomitization by increasing their porosity and permeability. Thus, vast quantities of the dolomitizing fluids could freely circulate through the strata during the subsequent transgression. Dolomitization ceased once a stable highstand had been attained

Temporal Evolution of Tertiary Dolostones on Grand Cayman as Determined by 87Sr/86Sr, 2003,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Jones Brian, Luth Robert W. ,
On the Cayman Islands, the Tertiary Bluff Group (Brac Formation, Cayman Formation, Pedro Castle Formation) is onlapped and overlain by the Pleistocene Ironshore Formation. On Grand Cayman, the Brac Formation and Cayman Formation are formed of finely crystalline dolostones whereas the Pedro Castle Formation is formed of finely crystalline dolostones, dolomitized limestones, and limestones. No dolomite has been found in the Ironshore Formation. Dolostones in the Bluff Group, which retained their original depositional textures and lack evidence of any recrystallization, are formed of small (typically 5-15 {micro}m long) interlocking, euhedral dolomite crystals. Dolomite cement is present in the Brac Formation and Cayman Formation but is very rare in the Pedro Castle Formation. Most of the dolomite crystals are characterized by oscillatory zoning with alternating zones of low-Ca calcian dolomite and high-Ca calcian dolomite. Grand Cayman is ideal for assessing the temporal evolution of Tertiary dolostones because the dolostones are young, have not been recrystallized, and are geographically isolated by the deep oceanic waters around the island. Interpretation of 158 new 87Sr/86Sr ratios from the dolostones in the Bluff Group indicate that the succession underwent three time-transgressive phases of dolomitization during the Late Miocene, the Late Pliocene, and Pleistocene. Petrographically similar dolomite was produced during each phase of dolomitization that was mediated by the same type of fluid and the same general conditions. Dolomitization was part of a dynamic cycle of processes that followed major lowstands. Karst development during the lowstands preconditioned the limestones for dolomitization by increasing their porosity and permeability. Thus, vast quantities of the dolomitizing fluids could freely circulate through the strata during the subsequent transgression. Dolomitization ceased once a stable highstand had been attained

Sequence Stratigraphy and Carbonate-Siliciclastic Mixing in a Terminal Proterozoic Foreland Basin, Urusis Formation, Nama Group, Namibia, 2003,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Saylor Beverly Z. ,
Superb three-dimensional exposures of mixed carbonate and siliciclastic strata of the terminal Proterozoic Urusis Formation in Namibia make it possible to reconstruct cross-basin facies relations and high-resolution sequence stratigraphic architecture in a tectonically active foreland basin. Six siliciclastic facies associations are represented: coastal plain; upper shoreface; middle shoreface; lower shoreface; storm-influenced shelf; and pebble conglomerate. Siliciclastic shoreface facies pass seaward into and interfinger with facies of an open carbonate shelf. Four carbonate facies associations are present: mid-shelf; shelf crest; outer shelf; and slope. Facies are arranged hierarchically into three scales of unconformity-bounded sequences. Small-scale sequences are one to tens of meters thick and span a few thousand years. They consist of shelf carbonate with or without shoreface siliciclastic facies near the bottom. Medium-scale sequences are tens of meters thick and span a few hundred thousand years. They consist of shoreface siliciclastic facies in their lower parts, which grade upward and pass seaward into shelf carbonate. Large-scale sequences are tens to hundreds of meters thick and span 1 to 2 million years. They are identified by widespread surfaces of exposure, abrupt seaward shifts in shoreface sandstone, patterns of facies progradation and retrogradation, and shoreline onlap by medium-scale sequences. Patterns of carbonate-siliciclastic mixing distinguish tectonic from eustatic controls on the evolution of large-scale sequences. Characteristics of eustatically controlled large-scale sequences include: (1) basal unconformities and shoreface sandstone that extend across the shelf to the seaward margin; (2) retrograde carbonate and siliciclastic facies belts that onlap the shoreline together, symmetrically, during transgression; and (3) upper shoreface sandstone that progrades seaward during highstand. In contrast, tectonically controlled sequences feature: (1) basal erosion surfaces and upper shoreface sandstone that are restricted to near the landward margin and pass seaward into zones of maximum flooding; and (2) asymmetric stratigraphic development characterized by landward progradation of carbonate from the seaward margin coincident with backstepping and onlap of the shoreline by siliciclastic facies. A two-phase tectonic model is proposed to account for the stratigraphic asymmetry of tectonically controlled sequences. Increased flexural bending during periods of active thrust loading caused submergence of the seaward margin and uplift of the landward margin. Rebound between thrusting episodes flattened the basin gradient and submerged the landward margin, causing expansion of carbonate facies from the seaward margin and simultaneous transgression of the landward margin. Although the two-phase model should apply to single-lithology successions deposited in active foreland basins, the mixing of carbonate and siliciclastic facies provides a particularly sensitive record of tectonic forcing. The sensitivity may be sufficient for medium- and small-scale sequences to record higher-frequency variations in flexural warping

Results 1 to 15 of 25
You probably didn't submit anything to search for