MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_left.php on line 5
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That effluent cave is see outflow cave.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_right.php on line 7
What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for hydrozincite (Keyword) returned 6 results for the whole karstbase:
The 'Calamine' of Southwest Sardinia: Geology, Mineralogy, and Stable Isotope Geochemistry of Supergene Zn Mineralization, 2003,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Boni M, Gilg Ha, Aversa G, Balassone G,
The mining district of southwest Sardinia, Italy, is one of the classic areas where primary carbonate-hosted Zn-Pb sulfide ores are associated with a relatively thick secondary oxidation zone containing Zn (hydroxy-)carbonates and silicates, the so-called 'calamine,' exploited until the 1970s. The extent of the capping oxidized ore zones, reaching deep below the surface, is generally independent of the present-day water table. The base of the oxidation profile containing nonsulfide Zn minerals in various uplifted blocks in the Iglesiente area can be both elevated above or submerged below the recent water table. The genesis of the ores is therefore considered to be related to fossil, locally reactivated, oxidation phenomena. The mineralogy of the nonsulfide mineralization is generally complex and consists of smithsonite, hydrozincite, and hemimorphite as the main economic minerals, accompanied by iron and manganese oxy-hydroxides and residual clays. This study places the secondary ores in the context of the tectonostratigraphic and climatic evolution of Sardinia and includes a petrographic and mineralogic study of the most abundant minerals, relating the mineralogy of secondary Zn and Pb carbonates to their stable C and O isotope geochemistry and constraining the origin of the oxidizing fluids and the temperature of mineralization. The{delta} 18OVSMOW values of smithsonite are homogeneous, regardless of crystal morphology, position, and mine location (avg. 27.4 {} 0.9{per thousand}). This homogeneity points to a relatively uniform isotopic composition of the oxidation fluid and corresponding formation temperatures of 20{degrees} to 35{degrees}C. Considering the karstic environment of smithsonite formation in southwest Sardinia, this high temperature could be due to heat release during sulfide oxidation. The carbon isotope compositions of secondary Zn carbonates display considerable variations of more than 9 per mil ({delta}13CVPDB from -0.6 to -10.4{per thousand}). This large range indicates participation of variable amounts of reduced organic and marine carbonate carbon during sulfide oxidation. The isotopic variation can be related to a variation in crystal morphologies of smithsonite, reflecting different environments of formation with respect to water table oscillations in karstic environments (upper to lower vadose to epiphreatic). The same range in{delta} 13C isotope values is displayed by the calcite associated with Zn carbonates and by recent speleothems. The most reliable time span for the deposition of bulk calamine ore in southwest Sardinia ranges from middle Eocene to Plio-Pleistocene, although further multiple reactivation of the weathering profiles, peaking within the warm interglacial periods of the Quaternary, cannot be excluded

Formation of Willemite in Hydrothermal Environments, 2003,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Brugger J, Mcphail Dc, Wallace M, Waters J,
Willemite (zinc silicate) is the main zinc mineral in some carbonate-hosted ore deposits (e.g., Franklin, New Jersey; Vazante, Brazil; Beltana, South Australia; Kabwe, Zambia). Recent interest in these unconventional zinc deposits has increased because of high zinc grades that exceed 40 wt percent, relatively low environmental impact of ore processing owing to the lack of acid-generating sulfides in the waste, and advances in ore processing technologies. In the past, most metallogenic studies proposed formation of willemite deposits by supergene or hypogene alteration of preexisting sulfide deposits. However, recent data on the Vazante, Beltana, and Kabwe deposits indicate willemite crystallization at temperatures in excess of 150{degrees}C, raising the possibility of primary precipitation from hydrothermal fluids. We use numerical geochemical modeling to examine the formation of willemite under hydrothermal conditions. Activity-activity diagrams reveal that, in the presence of dissolved sulfur and quartz, willemite instead of sphalerite will precipitate under oxidizing (e.g., hematite-stable, sulfate-predominant) and alkaline (pH higher than K feldspar-muscovite-quartz) conditions. Willemite also becomes more stable, relative to sphalerite, at high temperature, and willemite can coexist with magnetite at 300{degrees}C. The stabilities and solubilities of sphalerite, willemite, smithsonite, hydrozincite, and zincite were calculated for wide ranges of temperature (25{degrees}-300{degrees}C), chloride concentration, dissolved sulfur and carbon concentrations, pH, quartz saturation, and oxidation potential. Plots of the solubility of the different minerals as a function of two variables (e.g., temperature and redox state; pH and redox state) allow us to predict the effects of changing chemical conditions, which in turn permits an estimate of the efficiency of particular precipitation processes. Cooling is an effective process for precipitating sphalerite but not willemite, whereas pH increase (e.g., by acidic fluids reacting with carbonates) is effective for precipitating willemite but not sphalerite. Dynamic geochemical models that simulate physicochemical processes are used to understand the formation of the Beltana willemite deposit in the Adelaide geosyncline of South Australia. This small, high grade deposit (850,000 t at 36% Zn) is hosted in dolomite of the Cambrian Ajax Limestone, next to a tectonic contact with the diapiric, halite-bearing clastic sediments of the Callanna Group. The orebody is associated with hematite alteration and is characterized by the total absence of sulfides; willemite is the only zinc ore mineral, and the arsenate hedyphane (Ca2Pb3[AsO4]3Cl) is the main lead mineral. The model results show that willemite will precipitate in response to water-rock interaction and fluid mixing processes at temperatures above 120{degrees}C. The presence of arsenate in the hydrothermal fluid is likely to have been important at Beltana; in arsenate-absent models sulfate is reduced to sulfide by the precipitation of ferrous iron as hematite, resulting in the precipitation of sphalerite and galena. In contrast, in models including arsenate the reduction of sulfate to sulfide is inhibited and willemite is predicted to precipitate

The Padaeng Supergene Nonsulfide Zinc Deposit, Mae Sod, Thailand, 2003,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Reynolds Neal A. , Chisnall Tony W. , Kaewsang Kriangsak, Keesaneyabutr Chanan, Taksavasu Taksorn,
The Padaeng deposit near Mae Sod in western Thailand was the first supergene nonsulfide zinc deposit in the world to be developed as a large modern mining operation. The mine and associated zinc smelter, operated by Padaeng Industry Public Company Ltd. since 1984, went into production with reserves of 4.59 Mt at a grade of 28.9 percent zinc with a 10 percent zinc cutoff. Current resources are 5.14 Mt at a grade of 12.0 percent zinc with a 3 percent zinc cutoff. The Padaeng deposit is hosted by a mixed carbonate-clastic sequence of Middle Jurassic age. The deposit occurs in the hanging wall of the Padaeng fault, a major northwest-trending structure that was active through Cretaceous and Tertiary tectonism and uplift. Nonsulfide zinc ore comprises dominant hemimorphite with minor smithsonite and hydrozincite. Strata-bound ore zones occur within a northwest-dipping, deeply weathered, dolomitic sandstone; steeply dipping and irregular karstic zones in underlying massive, silty dolomite are controlled by north-trending fracture zones. Sulfide zinc-lead mineralization of Mississippi Valley type occured extensively in the vicinity of the Padaeng mine, most notably the small resources at Pha De and Hua Lon. Mineral deposits are typically sphalerite rich with minor galena and pyrite, forming small-scale open-space fillings, veins, and replacements within hydrothermal dolomite. Mineralization is dominantly strata bound within a horizon of intense hydrothermal dolomitization that forms the stratigraphic hanging wall to the nonsulfide ore zones at Padaeng. The only significant sulfide at the Padaeng mine is within this unit. Only trace sulfide occurs peripheral to, or down dip of, strata-bound or steeply dipping, nonsulfide orebodies. Sulfide mineralization is believed to have accompanied Cretaceous uplift and deformation, related to the onset of oblique subduction beneath the western margin of the Shan-Thai terrane. The nonsulfide deposit is believed to have formed when a substantial body of sulfide ore was uplifted on the margin of the Mae Sod Tertiary intermontane basin, commencing in the middle to late Miocene. Zinc-bearing acidic supergene fluids, generated by oxidation of the precursor sulfide body, reacted with carbonate in the underlying stratigraphic section to precipitate hemimorphite and smithsonite. Fluids were channeled by permeable dolomitic sandstones and by steep fracture and fault zones. Acidic fluids promoted deep weathering and karst formation, allowing mineralization to extend down dip in sandstone units for at least 150 m and vertically for a similar distance in steep structural zones. Transport of zinc out of the precursor sulfide body was facilitated by a falling water table, owing to uplift of the Padaeng fault block and a change from wet tropical to monsoonal or semiarid climatic conditions. There is no evidence for significant in situ replacement of sulfide deposits, and the leached remnants of the precursor sulfide body have been removed by erosion. The supergene process of dissolution and reprecipitation of zinc in the host rocks increased zinc grades and separation of zinc from lead, producing an economically attractive deposit. Successful exploration for this type of deposit requires a good understanding of the controls on primary sulfide mineralization and a good knowledge of local neotectonism, uplift history, hydrogeology, climatic evolution, and weathering history

Stable isotope (O and C) geochemistry of non-sulfide ZnPb deposits; case study: Chah-Talkh non-sulfide ZnPb deposit (Sirjan, south of Iran), 2013,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Rezaeian A. , Rasa I. , Amiri A. , Jafari M. R.

The study of oxygen and carbon isotopic ratios has gained importance to determine the origin of ore-bearing fluids, carbon origin, and also to determine the formation temperature of non-sulfide Pb and Zn minerals. In order to determine the origin of fluids and carbon existing in Zn carbonate minerals in Chah-Talkh deposit, initially the amounts of δ18OSMOW and δ13CPDB changes in various zinc minerals in important deposits in Iran and the world were studied, and then by comparing these values in Chah-Talkh deposit with those of other deposits, the origin of fluids responsible for ore forming, carbon, and formation temperature of Chah-Talkh deposit was determined. The range of δ18OSMOW changes in smithsonite mineral in non-sulfide lead and zinc deposits varies from 18.3 to 31.6 ‰, and δ18OSMOW in hydrozincite mineral varies from 7.8 to 27 ‰. Due to the impossibility of smithsonite sampling from Chah-Talkh deposit (due to it being fine-grained and dispersed), hydrozincite minerals which have high isotopic similarities with smithsonite are used for the isotopic analysis of carbon and oxygen. The range of δ18OSMOW changes in hydrozincite mineral of Chah-Talkh deposit varies from 7.8 to 15.15‰, which places in the domain of metamorphic water. The extensiveness of δ18OSMOW changes in Chah- Talkh indicates the role of at least two fluids in the formation of non-sulfide minerals. The obtained formation temperature of non-sulfide minerals (hydrozincite) in Chah- Talkh deposit is 70 to 100 °C, which indicates the role of metamorphic fluids in the formation of deposit. Complete weathering of sulfide minerals to a depth of 134 m confirms the role of rising metamorphic fluids in the formation of non-sulfide minerals. The δ13CPDB values of Chah-Talkh deposit are set in the range of atmospheric CO2 and carbonate rocks, in which the existence of atmospheric CO2 indicates the role of atmospheric fluids, and the existence of carbonate carbon rock indicates of the role of metamorphic fluids in the precipitation of non-sulfide Zn minerals.


Speleogenesis of an exhumed hydrothermal sulphuric acid karst in Cambrian carbonates (Mount San Giovanni, Sardinia), 2013,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Dewaele Jo, Forti Paolo, Naseddu Angelo

In the past few years the systematic study of caves intercepted by mine workings in southwest Sardinia has permitted us to observe morphologies due to rare speleogenetic and minerogenetic processes related to ancient hydrothermal activity. These relic morphologies are slowly being overprinted by recent speleogenetic processes that tend to obscure the hypogene origin of these caves. A combined geomorphological and mineralogical investigation has permitted a fairly detailed reconstruction of the various phases of evolution of these caves. Cave formation had already started in Cambrian times, but culminated in the Carboniferous, when most of the large voids still accessible today were formed. A key role in carbonate dissolution was played by sulphuric acid formed by the oxidation of the polymetallic ores present in the rocks since the Cambrian. During the Quaternary a variety of minerals formed inside the caves: calcite and aragonite, that yielded sequences of palaeo-environmental interest, and also barite, phosgenite, hydrozincite, hemimorphite and many others. These minerals are in part due to a phreatic thermal hypogenic cave forming phase, and in part to later epigene overprinting in an oxidizing environment rich in polymetallic ores. Massive gypsum deposits, elsewhere typical of this kind of caves, are entirely absent due to dissolution during both the phreatic cave formation and the later epigenic stage


Speleogenesis of an exhumed hydrothermal sulphuric acid karst in Cambrian carbonates (Mount San Giovanni, Sardinia), 2013,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
De Waele Jo, Forti P. , Naseddu A.

n the past few years the systematic study of caves intercepted by mine workings in southwest Sardinia has permitted us to observe morphologies due to rare speleogenetic and minerogenetic processes related to ancient hydrothermal activity. These relic morphologies are slowly being overprinted by recent speleogenetic processes that tend to obscure the hypogene origin of these caves. A combined geomorphological and mineralogical investigation has permitted a fairly detailed reconstruction of the various phases of evolution of these caves. Cave formation had already started in Cambrian times, but culminated in the Carboniferous, when most of the large voids still accessible today were formed. A key role in carbonate dissolution was played by sulphuric acid formed by the oxidation of the polymetallic ores present in the rocks since the Cambrian. During the Quaternary a variety of minerals formed inside the caves: calcite and aragonite, that yielded sequences of palaeo-environmental interest, and also barite, phosgenite, hydrozincite, hemimorphite and many others. These minerals are in part due to a phreatic thermal hypogenic cave forming phase, and in part to later epigene overprinting in an oxidizing environment rich in polymetallic ores. Massive gypsum deposits, elsewhere typical of this kind of caves, are entirely absent due to dissolution during both the phreatic cave formation and the later epigenic stage.


Results 1 to 6 of 6
You probably didn't submit anything to search for