MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology

Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That residual clay is clay or sandy clay remaining on a rock surface after removal of calcium carbonate by solution. compare terra rossa [10].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for lithosphere (Keyword) returned 8 results for the whole karstbase:
Evolution des karsts Ocaniens (Karsts, bauxite et phosphates), 1992, Bourrouilhlejan, Fr.
EVOLUTION OF THE PACIFIC OCEAN KARSTS - Karst phenomena constitute one of the main characteristics of the "high carbonate islands" of the Pacific Ocean. They are the key to the under-standing of the geological evolution, the stratigraphy, from Lower Miocene to Pleistocene and mid-Holocene, the diagenesis, mainly dolomitization and the current economic interest based on bauxite and phosphate. The eustatic variations have been numerous over the past 25 million years and can be added or substracted from the emersion and submersion movements of the plate supporting these carbonate platforms. Each island therefore has its own complex geological background with dolomitization, calcrete, bauxitic soils, fossil marine notches and karst surface either submerged or filled with phosphate, which can be mined for profit. Thanks to a thorough study of these platforms, it has been possible to establish an evolution of karst genesis in accordance with the evolution of the Pacific lithosphere and also to draw up a new model of phosphate genesis linked to phosphato-bauxitic soils and meromictic anoxic lakes.

Growth and demise of an Archean carbonate platform, Steep Rock Lake, Ontario, Canada, 1999, Kusky T. P. , Hudleston P. J. ,
The Steep Rock Group of northwest Ontario's Wabigoon subprovince is one of the world's thickest Archean carbonate platform successions. It was deposited unconformably over a 3001-2928 Ma gneissic terrane, and contains a remarkable group of biogenic and oolitic limestones, dolostones, micrites, and karat breccias capped by a thick paleosol developed between and over karst towers. The presence of aragonite fans, herringbone calcite, and rare gypsum molds suggests that the carbonate platform experienced at least local anaerobic and hypersaline depositional conditions. This sequence shows that a combination of chemical and biological processes was able to build a carbonate platform 500 m thick by 3 billion years ago. The carbonate platform is structurally overlain by a mixture of complexly deformed rocks of the Dismal Ashrock forming a melange with blocks of ultramafic volcaniclastic rocks, mafic volcanics, carbonate, tonalite, lenses of Fe-ore rock, and metasedimentary rocks, in a shaly, serpentinitic, and fragmental ultramafic volcaniclastic matrix. The melange shows evidence of polyphase deformation, with early high-strain fabrics formed at amphibolite facies, and later superimposed brittle fabrics related to the final emplacement of the melange over the carbonate platform. An amphibolite- through greenschist-grade shear zone marks the upper contact of the melange with overlying mafic volcanic and tuffaceous rocks of the ca. 2932 Ma Witch Bay allochthon, interpreted as a primitive island are sequence. We suggest an evolutionary model for the area that begins with rifting of an are sequence (Marmion Complex of the Wabigoon are) that initiated subsidence and sedimentation on the Steep Rock platform and its correlatives that extend for a restored strike length exceeding 1000 km. Shallow water carbonate sedimentation continued until the platform was uplifted on the flanks of a flexural bulge related to the approach of the Witch Bay allochthon, representing collision of the rifted are margin of the Wabigoon subprovince with the Witch Bay are. Melange of the Dismal Ashrock was formed as off-axis volcanic rocks were accreted to the base of the Witch Bay allochthon prior to its collision with the Steep Rock platform

The influence of the geological setting on the morphogenetic evolution of the Tremiti Archipelago (Apulia, Southeastern Italy), 2005, Andriani Gk, Walsh N, Pagliarulo R,
The Tremiti Archipelago (Southern Adriatic Sea), also called Insulae Diomedae from the name of the Greek hero who first landed there, is an area of high landscape and historical value. It is severely affected by significant geomorphologic processes dominated by mass movements along the coast that constitute the most important and unpredictable natural hazard for the population and cultural heritage. Coastal erosion is favoured by the peculiar geological and structural setting, seismic activity, weathering, development of karst processes, and wave action. The present paper reports on descriptive and qualitative evaluation of the factors controlling landslides and coastline changes based on medium-term in situ observation, detailed surface surveys at selected locations since 1995, and historic and bibliographic data. The Tremiti Archipelago is part of an active seismic area characterised by a shear zone separating two segments of the Adriatic microplate that have shown different behaviour and roll back rates in the subduction underneath the Apennines since middle Pleistocene. Although coastal morphology can be basically considered to be the result of wave action, the continual action of subaerial processes contributes effectively to the mechanism of shoreline degradation. Weathering mainly affects the marly calcisiltites and calcilutites of the Cretaccio Fm. and the friable and low cemented calcarenites and biomicrites of the San Nicola Fm. The cliffs are characterised by different types of failure such as lateral spreads, secondary topples, rock falls and slides. At the Isle of San Nicola, landslides are controlled by the contrast in competence, shear strength and stiffness between the Pliocene re-crystallised dolomitic calcarenites and calcisiltites and the Miocene marly calcilutites and calcisiltites. At the Isles of San Domino and Caprara rock falls are attributed to the undercutting of waves at the base of the cliffs

GIANT COLLAPSE STRUCTURES FORMED BY HYPOGENIC KARSTIFICATION: THE OBRUKS OF THE CENTRAL ANATOLIA, TURKEY, 2009, Bayari S. , Ozyurt N. , Pekkans E.

Assessment of the tectonic, geologic and hydrogeologic processes reveal that the Obruks, mega collapse dolines located in the central Anatolia-Turkey, are products of hypogenic karsti?cation. Obruks are characterized by their cylindrical or truncated cone shapes with diameters and depths reaching several hundreds of meters. Geological, geophysical and hydrogeological data, along with the groundwater’s chemical and isotopic composition suggest a hypogene karsti?cation process that seems to be driven by the upward migration of a deep-seated carbon dioxide ?ux supplied by an asthenospheric rise. The linear distribution of obruks through the suture zone of a former oceanic subduction and their association with young volcanism reveal a tecto-genetic origin that is related to the extensional thinning of the upper lithosphere due to orogenic collapse of the Taurus Mountain Range, which is a part of the Alpine-Himalayan Orogenic Belt.


Karst in Earth's Crust: distribution and the main types, 2009, Andreychouk V. , Dublyansky Y. , Yezhov Y. , And Lysenin G.

Some problems of theoretical karstology are considered. An attempt is made to match the fundamentals of karstology and recent ideas on the structure of lithosphere and the vertical zoning of hydrosphere. Boundary conditions of karstogenesis and karst zoning are discussed. The boundaries and the structure of karstosphere, as well as the place of karst among other geological processes are defined.

The book is of interest for karstologists, hydrogeologists, geologists and geographers.


Deep 3D thermal modelling for the city of Berlin (Germany), 2013, Sippel Judith, Fuchs Sven, Cacace Mauro, Braatz Anna, Kastner Oliver, Huenges Ernst, Scheckwenderoth Magdalena

This study predicts the subsurface temperature distribution of Germany’s capital Berlin. For this purpose, a data-based lithosphere-scale 3D structural model is developed incorporating 21 individual geological units. This model shows a horizontal grid resolution of (500 9 500) m and provides the geometric base for two different approaches of 3D thermal simulations: (1) calculations of the steadystate purely conductive thermal field and (2) simulations of coupled fluid flow and heat transport. The results point out fundamentally different structural and thermal configurations for potential geothermal target units. The top of the Triassic Middle Buntsandstein strongly varies in depth (159–2,470 m below sea level) and predicted temperatures (15–95 _C), mostly because of the complex geometry of the underlying Permian Zechstein salt. The top of the sub-salt Sedimentary Rotliegend is rather flat (2,890–3,785 m below sea level) and reveals temperatures of 85–139 _C. The predicted 70 _C-isotherm is located at depths of about 1,500–2,200 m, cutting the Middle Buntsandstein over large parts of Berlin. The 110 _C-isotherm at 2,900–3,700 m depth widely crosscuts the Sedimentary Rotliegend. Groundwater flow results in subsurface cooling the extent of which is strongly controlled by the geometry and the distribution of the Tertiary Rupelian Clay. The cooling effect is strongest where this clay-rich aquitard is thinnest or missing, thus facilitating deep-reaching forced convective flow. The differences between the purely conductive and coupled models highlight the need for investigations of the complex interrelation of flow- and thermal fields to properly predict temperatures in sedimentary systems.


Deep 3D thermal modelling for the city of Berlin (Germany), 2013, Sippel Judith, Fuchs Sven, Cacace Mauro, Braatz Anna, Kastner Oliver, Huenges Ernst, Scheckwenderoth Magdalena

This study predicts the subsurface temperature distribution of Germany’s capital Berlin. For this purpose, a data-based lithosphere-scale 3D structural model is developed incorporating 21 individual geological units. This model shows a horizontal grid resolution of (500 9 500) m and provides the geometric base for two different approaches of 3D thermal simulations: (1) calculations of the steady state purely conductive thermal field and (2) simulations of coupled fluid flow and heat transport. The results point out fundamentally different structural and thermal configurations for potential geothermal target units. The top of the Triassic Middle Buntsandstein strongly varies in depth (159–2,470 m below sea level) and predicted temperatures (15–95 _C), mostly because of the complex geometry of the underlying Permian Zechstein salt. The top of the sub-salt Sedimentary Rotliegend is rather flat (2,890–3,785 m below sea level) and reveals temperatures of 85–139 _C. The predicted 70 _C-isotherm is located at depths of about 1,500–2,200 m, cutting the Middle Buntsandstein over large parts of Berlin. The 110 _C-isotherm at 2,900–3,700 m depth widely crosscuts the Sedimentary Rotliegend. Groundwater flow results in subsurface cooling the extent of which is strongly controlled by the geometry and the distribution of the Tertiary Rupelian Clay. The cooling effect is strongest where this clay-rich aquitard is thinnest or missing, thus facilitating deep-reaching forced convective flow. The differences between the purely conductive and coupled models highlight the need for investigations of the complex interrelation of flow- and thermal fields to properly predict temperatures in sedimentary systems.


Do carbonate karst terrains affect the global carbon cycle?, 2013, Martin Jonathan B. , Brown Amy, Ezell John

Carbonate minerals comprise the largest reservoir of carbon in the earth’s lithosphere, but they are generally assumed to have no net impact on the global carbon cycle if rapid dissolution and precipitation reactions represent equal sources and sinks of atmospheric carbon. Observations of both terrestrial and marine carbonate systems indicate that carbonate minerals may simultaneously dissolve and precipitate within different portions of individual hydrologic systems. In all cases reported here, the dissolution and precipitation reactions are related to primary production, which fixes atmospheric CO2 as organic carbon, and the subsequent remineralization in watersheds of the organic carbon to dissolved CO2. Deposition of carbonate minerals in the ocean represents a flux of CO2 to the atmosphere. The dissolution of oceanic carbonate minerals can act either as a sink for atmospheric CO2 if dissolved by carbonic acid, or as a source of CO2 if dissolved through sulfide oxidation at the freshwater-saltwater boundary. Since dissolution and precipitation of carbonate minerals depend on ecological processes, changes in these processes due to shifts in rainfall patterns, earth surface temperatures, and sea level should also alter the potential magnitudes of sources and sinks for atmospheric CO2 from carbonate terrains, providing feedbacks to the global carbon cycle that differ from modern feedbacks.


Results 1 to 8 of 8
You probably didn't submit anything to search for