Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That guano is an accumulated deposit of animal excrement. in caves it is most commonly associated with bat colonies, but cave dwelling birds such as swifts may also contribute. guano is only abundant in tropical regions and may be dry and powdery, or a foul, wet, sludge - as in the niah caves of sarawak. it is a vital food source for many troglobites. consisting mainly of phosphates and nitrate it is valued as a fertilizer or an ingredient of explosives and has commonly been mined. over 100,000 tons of bat guano have been extracted from carlsbad caverns, usa [9]. see also cave guano.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for model simulation (Keyword) returned 6 results for the whole karstbase:
THE ROLE OF DISSOLUTION KINETICS IN THE DEVELOPMENT OF KARST AQUIFERS IN LIMESTONE - A MODEL SIMULATION OF KARST EVOLUTION, 1990, Dreybrodt W,

Risk assessment methodology for karst aquifers .2. Solute-transport modeling, 1997, Field Ms,
Ground-water flow and solute-transport simulation modeling are major components of most exposure and risk assessments of contaminated aquifers. Model simulations provide information on the spatial and temporal distributions of contaminants in subsurface media but are difficult to apply to karst aquifers in which conduit flow is important. Ground-water flow and solute transport in karst conduits typically display rapid-flow velocities, turbulent-flow regimes, concentrated pollutant-mass discharge, and exhibit open-channel or closed-conduit how Conventional groundwater models, dependent on the applicability of Darcy's law, are inappropriate when applied to karst aquifers because of the (1) nonapplicability of Darcian-flow parameters, (2) typically nonlaminar flow regime, and (3) inability to locate the karst conduits through which most flow and contaminant transport occurs. Surface-water flow and solute-transport models conditioned on a set of parameters determined empirically from quantitative ground-water tracing studies may be effectively used to render fate-and-transport values of contaminants in karst conduits. Hydraulic-flow and geometric parameters developed in a companion paper were used in the surface-water model, TOXI5, to simulate hypothetical slug and continuous-source releases of ethylbenzene in a karst conduit. TOXI5 simulation results showed considerable improvement for predicted ethylbenzene-transport rates and concentrations over qualitative tracing and analytical ground-water model results. Ethylbenzene concentrations predicted by TOXI5 simulations were evaluated in exposure and risk assessment models

Dam sites in soluble rocks: a model of increasing leakage by dissolutional widening of fractures beneath a dam, 2003, Romanov D. , Gabrovsek F. , Dreybrodt W. ,
Water flowing through narrow fissures and fractures in soluble rock, e.g. limestone and gypsum, widens these by chemical dissolution. This process, called karstification, sculptures subterranean river systems which drain most of their catchment. Close to dam sites, unnaturally high hydraulic gradients are present to drive the water impounded in the reservoir downstream through fractures reaching below the dam. Under such conditions, the natural process of karstification is accelerated to such an extent that high leakage rates may arise, which endanger the operation of the hydraulic structure. Model simulations of karstification below dams by coupling equations of dissolutional widening to hydrodynamic flow are presented. The model scenario is a dam 100 in wide in limestone or gypsum. The modelling domain is a two-dimensional slice 1 m wide directed perpendicular to the dam. It extends 375 in vertically and 750 in horizontally. The dam is located in its center. This domain is divided by fractures and fissures into blocks of 7.5 x 7.5 x 1 m. The average aperture width of the fractures is 0.02 cm. We performed model runs on standard scenarios for a dam site in limestone with the height H of impounded water 150 in, a horizontal impermeable apron of width W=262 m and a grouting curtain reaching down to a depth of G=97 m. In a second scenario, we changed these construction features to G=187 m and W=82 m. To calculate widening of the fractures, well-established experimental data on the dissolution of limestone and gypsum have been used as they occur in such geochemical settings. All model runs show similar characteristic behaviour. Shortly after filling, the reservoir exhibits a small leakage of about 0.01 m(-3) s(-1), which increases steadily until a breakthrough event occurs after several decades with an abrupt increase of leakage to about 1 m(3) s(-1) within the short time of a few years. Then, flow in the fractures becomes turbulent and the leakage increases to 10 m(3) s(-1) in a further time span of about 10 years. The widths of the fractures are visualized in various time steps. Small channels propagate downstream and leakage rises slowly until the first channel reaches the surface downstream. Then breakthrough occurs, the laminar flow changes to turbulent and a dense net of fractures which carry flow is established. We performed a sensitivity analysis on the dependence of breakthrough times on various parameters, determining breakthrough. These are the height of impounded water H, the depth G of grouting, the average aperture width a(0) of the fractures and the chemical parameters, which are c(eq) the equilibrium concentration of Ca with respect to calcite and the Ca-concentration c(in) of the inflowing water. The results show that the most critical parameter is a(0). At fracture aperture widths of 0.01 cm, breakthrough times are above 500 years. For values of a(0)>0.02 cm, however, breakthrough times are within the lifetime of the structure. We have also modelled dam sites in gypsum, which exhibit similar breakthrough times. However, after breakthrough, owing to the much larger dissolution rates of gypsum, the time until unbearable leakage is obtained, is only a few years. The modelling can be applied to complex geological settings, as phreatic cave conduits below the dam, or a complex stratigraphy with varying properties of the rock with respect to hydraulic conductivity and solubility. A few examples are given. In conclusion, our results support the assumption that increasing leakage of dam sites may be caused by dissolutional widening of fractures. (C) 2003 Elsevier Science B.V. All rights reserved

Simulation of the development of gypsum maze caves, 2005, Birk S, Liedl R, Sauter M, Teutsch G,
The development of gypsum maze caves under artesian conditions has been simulated. The numerical model simulations show that the evolution of maze caves in this type of setting requires structural preferences such as laterally extended fissure networks in a horizon of the gypsum layer. Without any structural preferences vertical shafts rather than maze caves are predicted to develop. The most important stage for the development of horizontal caves under artesian conditions is found to be the initial karstification period. During this period the structure of the mature conduit system is established. The solutional enlargement of conduits is spatially extended, total dissolution rates are higher than the later ones

SIMULATING DRAINAGE FROM A FLOODED SINKHOLE, 2010, Field M. S.
Understanding sinkhole-drainage capacity and functioning is critical to realizing the effects that may be created when direct-ing stormwater drainage into sinkholes. In this paper, the basics of sinkhole drainage are reviewed in terms of point vortex flow created by drainage down a sinkhole swallet. Then, several different, relatively simple sinkhole shapes are presented and mathematical models developed to simulate drainage from in-flowing water. The models emphasize the significance of drainage rate as a function of sinkhole shape and sinkhole wetted cross-sectional area relative to changes in water level and time. Model simulations provide insights into the sensitivity of sinkholes to inflow rates and water-level changes with time. Ma-jor findings include insights into the rapidity by which inflows may increase the water level in a sinkhole and the significance of sinkhole shape and cross-sectional area as it relates to sinkhole drainage rate. The numerical solution is completely general so it allows for varying inflow rates in any manner desired. Application of the model to real sinkholes should assist in the management of sinkhole-flooding problems.

EXAMINING A COUPLED CONTINUUM PIPE-FLOW MODEL FOR GROUNDWATER FLOW AND SOLUTE TRANSPORT IN A KARST AQUIFER, 2010, Hu B. X.
A coupled continuum pipe-flow (CCPF) model has been developed for groundwater flow and solute transport in a karst aquifer with conduits. Groundwater flow in conduits is simulated through a pipe flow model and flow in fissured matrix rock is described by Darcys law. Water mass exchange between the two domains is modeled by a firstorder exchange rate method. In this study, we investigate mathematical well-posedness (mathematical term, which means solution existence and uniqueness) of the CCPF model, develop a finite elementary method to numerically approximate the mathematical model and study the convergence of the numerical method. The study results prove the modeling approach is mathematically well posed and numerically converged. To study the accuracy of the CCPF model, a recently developed Stokes-Darcy (SD) model and CCPF model are compared with laboratory experimental results. It was found that the SD model simulations match well with experimental results, but the CCPF model overestimates the hydraulic head in the matrix, especially around the matrix and conduit interface. The model underestimates solute transport in the conduit and does not capture the plume distribution in the matrix. In comparison with the SD model, the CCPF model requires an additional parameter, the first-order mass exchange rate, and the parameter is normally obtained through inverse method curve fitting. The SD method may provide an approach to directly estimate the parameter value.

Results 1 to 6 of 6
You probably didn't submit anything to search for