MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology

Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That mud is water saturated fine clayey earth material [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for ne-spain (Keyword) returned 9 results for the whole karstbase:
Natural and human-induced sinkholes in gypsum terrain and associated environmental problems in NE Spain, 1995, Benito G, Campo Pp, Guti C, Sancho C,

Sedimentology and geochemistry of fluvio-lacustrine tufa deposits controlled by evaporite solution subsidence in the central Ebro Depression, NE Spain, 2000, Arenas C, Gutierrez F, Osacar C, Sancho C,
The Urrea de Jalon tufa deposits constitute the 20- to 50-m-thick caprock (0.3 km(2)) of an isolated mesa. They disconformably overlie horizontal strata of the Tertiary Ebro Basin (NE Spain), which contains a thick succession of lacustrine gypsum and marls, followed by limestones, marls and, locally, fluvial sandstones and mudstones. The tufa deposits show a complex, large-scale framework of basin-like structures with centripetal dips that decrease progressively from the base to the top of the tufa succession, and beds that thicken towards the centre of the structure (cumulative wedge-out systems). These geometries reveal that the tufa deposits were affected by differential synsedimentary subsidence. Distinct onlapping depressions reflect time migration of the subsiding areas. The studied carbonates are composed mostly of low-Mg calcite, with minor quartz. Some samples have anomalously high contents of Fe, Mn and Ba that may exceed 1% (goethite, haematite and barite are present). Carbonate facies are: (a) macrophyte encrustation deposits; (b) bryophyte build-ups; (c) oncolite and coated grain rudstones; (d) non-concentric stromatolite-like structures; (e) massive or bioturbated biomicrites; and (f) green and grey marls. Facies a and c show a great variety of microbial-related forms. These facies can be arranged in dm- to 2-m-thick vertical associations representing: (i) fluvial-paludal sequences with bryophyte growths; (ii) pond-influenced fluvial sequences; and (iii) lacustrine-palustrine sequences. The Urrea de Jalon tufa deposits formed in a fluvio-lacustrine environment that received little alluvial sediment supply. Isotope compositions (delta(13)C and delta(18)O) reveal meteoric signatures and accord with such a hydrologically open system of fresh waters. The Fe, Mn and Ba contents suggest an additional supply of mineralized waters that could be related to springs. These would have been discharge points in the Ebro Depression of a regional aquifer of the Iberian Ranges. Rising groundwater caused the solution of the underlying evaporites and the synsedimentary subsidence of the tufa deposits

The stratigraphical record and activity of evaporite dissolution subsidence in Spain, 2001, Gutierrez F. , Orti F. , Gutierrez M. , Perezgonzalez A. , Benito G. , Prieto J. G. , Valsero J. J. D. ,
The evaporite formations tin outcrop and at shallow depth) cover an extensive area of the Spanish territory. These soluble sediments are found in diverse geological domains and record a wide time span from the Triassic up to the present day. Broadly, the Mesozoic and Paleogene formations (Alpine cycle) are affected by compressional structures, whereas the Neogene (post-orogenic) sediments remain undeformed. The subsidence caused by subsurface dissolution of the evaporites (subjacent karst) takes place in three main types of stratigraphical settings: a) Subsidence affecting evaporite-bearing Mesozoic and Tertiary successions (interstratal karst); b) Subsidence in Quaternary alluvial deposits related to the exorheic evolution of the present-day fluvial systems (alluvial or mantled karst); c) Subsidence in exposed evaporites (uncovered karst). These types may be represented by paleosubsidence phenomena (synsedimentary and/or postsedimentary) recognizable in the stratigraphical record, or by equivalent currently active or modem examples with surface expression. The interstratal karstification of the Mesozoic marine evaporites and the consequent subsidence of the topstrata is revealed by stratiform collapse breccias and wedge-outs in the evaporites grading into unsoluble residues. In several Tertiary basins, the sediments overlying evaporites locally show synsedimentary and/or postsedimentary subsidence structures. The dissolution-induced subsidence coeval to sedimentation gives place to local thickenings in basin-like structures with convergent dips and cumulative wedge out systems. This sinking process controls the generation of depositional environments and lithofacies distribution. The postsedimentary subsidence produces a great variety of gravitational deformations in the Tertiary supra-evaporitic units including both ductile and brittle structures (flexures, synforms, fractures, collapse and brecciation). The Quaternary fluvial terrace deposits on evaporite sediments show anomalous thickenings (> 150 m) caused by a dissolution-induced subsidence process in the alluvial plain which is balanced by alluvial aggradation. The complex space and time evolution pattern of the paleosubsidence gives place to intricate and anarchical structures in the alluvium which may be erroneously interpreted as pure tectonic deformations. The current subsidence and generation of sinkholes due to suballuvial karstification constitutes a geohazard which affects to large densely populated areas endangering human safety and posing limitations to the development. An outstanding example corresponds to Calatayud historical city, where subsidence severely damages highly valuable monuments. The subsidence resulting from the underground karstification of evaporites has determined or influenced the generation of some important modem lacustrine basins like Gallocanta, Fuente de Piedra and Banyoles lakes. The sudden formation of sinkholes due to the collapse of cave roofs is relatively frequent in some evaporite outcrops. Very harmful and spectacular subsidence activity is currently occurring in the Cardona salt diapir where subsidence has been dramatically exacerbated by mining practices

Paleosubsidence and active subsidence due to evaporite dissolution in Spain, 2002, Gutierrez F. , Orti F. , Gutierrez M. , Perezgonzalez A. , Benito G. , Gracia F. J. , Duran J. J. ,
Evaporite formations crop out or are at shallow depth present in an extensive area of Spain. These soluble sediments occur in diverse geological domains and were deposited over a long time span, from the Triassic up to the present day. Broadly, the Mesozoic and Paleogene formations (Alpine cycle) are affected by compressional structures, whereas the Neogene (post-orogenic) sediments remain undeformed. Subsidence caused by subsurface dissolution of evaporites (subjacent karst) takes place in three main types of stratigraphic settings: a) subsidence affecting evaporite-bearing Mesozoic and Tertiary successions (interstratal karst); b) subsidence in Quaternary alluvial deposits related to the exorheic evolution of present-day fluvial systems (alluvial or mantled karst); and c) subsidence in exposed evaporites (uncovered karst). These types may be represented by paleosubsidence phenomena (synsedimentary and/or postsedimentary) recognizable in the stratigraphic record, or by equivalent, currently active or modem examples which have a surface expression. Interstratal karstification of Mesozoic marine evaporites, and the consequent subsidence of overlying strata, is revealed by stratiform collapse breccias and wedge outs of the evaporites grading into unsoluble residues. In several Tertiary basins, the sediments overlying evaporites locally show synsedimentary and/or postsedimentary subsidence structures. Dissolution-induced subsidence coeval with sedimentation is accompanied by local thickening of strata in basin-like structures with convergent dips and cumulative wedge-out systems. This sinking process controls the generation of depositional environments and lithofacies distribution. Postsedimentary subsidence produces a great variety of gravitational deformations in Tertiary supra-evaporitic units, including both ductile and brittle structures (flexures, synforms, fractures, collapse, and brecciation). Quaternary fluvial terrace deposits overlying evaporites show anomalous thickenings (>150 m) caused by a dissolution-induced subsidence process in the alluvial plain, which is balanced by alluvial aggradation. The complex evolution (in time and space) of paleosubsidence leads to intricate and chaotic structures in the alluvium, which may be erroneously interpreted as pure tectonic deformations. The current subsidence and generation of sinkholes due to suballuvial karstification constitutes a geohazard which affects large, densely populated areas, and thus endangers human safety and poses limitations on development. An outstanding example can be seen in Calatayud, an important historical city where subsidence has severely damaged highly valuable monuments. Subsidence resulting from the underground karstification of evaporites has caused or influenced the generation of some important modem lacustrine basins, such as Gallocanta, Fuente de Piedra, and Banyoles Lakes. The sudden formation of sinkholes due to collapse of cave roofs is fairly frequent in some evaporite outcrops. Very harmful and spectacular subsidence activity is currently occurring in the Cardona salt diapir, where subsidence has been dramatically exacerbated by mining practices

Subsidence rates and urban damages in alluvial dolines of the Central Ebro basin (NE Spain), 2002, Soriano M. A. , Simon J. L. ,
In the central Ebro basin, alluvial dolines develop on Quaternary materials overlying Neogene evaporites. This process is very active. Analysing aerial photographs of different years important differences can be observed. Since the 1970s, when the urbanisation of the area took place, karst processes have damaged many buildings and infrastructures. From the dates of construction and the repair of a number of buildings and pavements we calculate subsidence rates (12-120 mm/year). Moreover, we decided to monitor, for around 4 years, three dolines developed on urban areas to determine their subsidence behaviour. A water level device (with an error of 2-3 mm) was utilised for this purpose. The subsidence rates, so obtained, are 64.5, 39 and 21 mm/year, which fit with the previous data from repaired zones

Paleosubsidence and active subsidence due to evaporite dissolution in the Zaragoza area (Huerva River valley, NE Spain): processes, spatial distribution and protection measures for transport routes, 2004, Guerrero J. , Gutierrez F. , Lucha P. ,
The lowest 17-km long reach of the Huerva River valley, down to its confluence with the Ebro River in Zaragoza city, flows across salt-bearing evaporites of the Ebro Tertiary Basin (NE Spain). Upstream, the horizontally lying Miocene evaporites are interfingered with non-soluble distal alluvial fan facies (shales and sandstones). The proportion of soluble facies in the Huerva River valley increases in a downstream direction towards the basin depocenter. On the basis of the type and magnitude of the paleosubsidence features, the valley has been divided into four reaches. Along reach I, undeformed terrace deposits less than 4 m thick rest on insoluble detrital bedrock. In reaches II and III, dissolution at the alluvium-bedrock boundary has generated local thickening, deformation and paleocollapse structures, which only affect the alluvial mantle. In reach IV, terrace deposits thicken to over 60 m resulting from a large-scale synsedimentary subsidence. In this sector, subsidence locally affects to both the alluvium and the underlying bedrock. This indicates that dissolution acts at the rockhead beneath the alluvial cover (alluvial karst) and within the evaporitic substratum (interstratal karst). The development of an intraevaporitic karst in reach IV is attributed to gypsum and salt dissolution. Irregular terrace gravel bodies (gravel pockets) embedded in a fine-grained matrix associated with paleocollapse structures have been interpreted as liquefaction-fluidization structures resulting from ground acceleration and suction induced by catastrophic collapses. Subsidence is currently active in the region affecting areas with a thin alluvial cover in reaches III and IV. The low subsidence activity in most of Zaragoza city is explained by the presence of thickened (around 50 m) and indurated alluvial deposits. In the surrounding area, numerous buildings in Cadrete and Santa Fe villages have been severely damaged by subsidence. Natural and human-induced subsidence favours the development of slope movements in the gypsum scarp overlooking Cadrete village. Several transport routes including the Imperial Canal (irrigation canal) and the recently completed Madrid-Barcelona high-speed railway are affected by human-induced sinkholes. The paleocollapse structures exposed in the trenches of this railway and a ring road under construction point to hazardous locations underlain by cavities and collapse structures where special protection measures should be applied. Rigid structures are recommended beneath the high-speed railway with sufficient strength to span the larger sinkholes with no deformation. Electronic monitoring devices linked to a warning system can detect subtle subsidence-induced deformations in carriageways or railways. This research demonstrates that the study of the paleokarst helps to understand the processes involved in the present-day subsidence phenomena and their general spatial distribution. (C) 2003 Elsevier B.V. All rights reserved

Natural and anthropogenic hazards in karst areas of Albania, 2004, Parise M. , Qiriazi P. , Sala S. ,
In Albania, about one quarter of the country is occupied by outcroppings of soluble rocks; thus, karst represents an important and typical natural environment. Today karst areas are seriously threatened by a number of hazards, of both natural and anthropogenic origin. Many problems are related to agricultural practices: the use of heavy machinery, ever-increasing in recent years, results at many sites in destruction of the original karst landscapes. Use of pesticides and herbicides, in addition, causes the loss of karst ecosystems of great biological relevance, as has been observed in the Dumre district, where about 80 lakes of karst origin are present in the evaporites of Permian-Triassic age. Agricultural practice performed on slopes with medium to high gradient is a further factor which greatly predispose the slopes to erosion. The cave heritage of Albania (estimated so far in about 1000 caves) is at risk because of the uncontrolled quarrying activities which determine the total or partial destruction of karst caves, including many of naturalistic, archaeological and speleological interest. Many caves have also become sites of illegal disposal of solid and liquid wastes, which causes pollution of the karst ecosystems and of the aquifer therein present, with heavy negative consequences on the quality of water. Even though most of the cases here mentioned are related to anthropogenic activities, the natural hazards, such as subsidence phenomena, floods, and the development of sinkholes, have not to be disregarded

Spatial distribution, morphometry and activity of La Puebla de Alfind_cn sinkhole field in the Ebro river valley (NE Spain): applied aspects for hazard zonation, 2005, Guti Crrez, Guti Crrez, Mar_n C. , Desir G. , Maldonado C. ,

Spatial distribution, morphometry and activity of La Puebla de Alfinden sinkhole field in the Ebro river valley (NE Spain): applied aspects for hazard zonation, 2005, Gutierrezsantolalla F. , Gutierrezelorza M. , Marin C. , Desir G. , Maldonado C. ,
A highly active collapse sinkhole field in the evaporitic mantled karst of the Ebro river valley is studied (NE Spain). The subsidence is controlled by a NW-SE trending joint system and accelerated by the discharge of waste water from a nearby industrial state. The morphometry, spatial distribution and temporal evolution of the sinkholes have been analysed. The volume of the sinkholes yields a minimum estimate of average lowering of the surface by collapse subsidence of 46 cm. The clustering of the sinkholes and the tendency to form elongated uvalas and linear belts, in a NW-SE direction have a predictive utility and allow the establishment of criteria for a hazard zonation. With the precipitation record supplied by a pluviograph and periodic cartographic and photographic surveys the influence of heavy rainfall events on the triggering of collapses has been studied

Results 1 to 9 of 9
You probably didn't submit anything to search for