MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology

Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That capillary potential is the scalar quantity that represents the work required to move a unit mass of water from the soil to a chosen reference location and energy state [22].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for orebody (Keyword) returned 6 results for the whole karstbase:
Genesis of the Dogankuzu and Mortas Bauxite Deposits, Taurides, Turkey: Separation of Al, Fe, and Mn and Implications for Passive Margin Metallogeny, 2002, Ozturk Huseyin, Hein James R. , Hanilci Nurullah,
The Taurides region of Turkey is host to a number of important bauxite, Al-rich laterite, and Mn deposits. The most important bauxite deposits, Do[g]ankuzu and Morta[s], are karst-related, unconformity-type deposits in Upper Cretaceous limestone. The bottom contact of the bauxite ore is undulatory, and bauxite fills depressions and sinkholes in the footwall limestone, whereas its top surface is concordant with the hanging-wall limestone. The thickness of the bauxite varies from 1 to 40 m and consists of bohmite, hematite, pyrite, marcasite, anatase, diaspore, gypsum, kaolinite, and smectite. The strata-bound, sulfide- and sulfate-bearing, low-grade lower part of the bauxite ore bed contains pyrite pseudomorphs after hematite and is deep red in outcrop owing to supergene oxidation. The lower part of the bauxite body contains local intercalations of calcareous conglomerate that formed in fault-controlled depressions and sinkholes. Bauxite ore is overlain by fine-grained Fe sulfide-bearing and calcareous claystone and argillaceous limestone, which are in turn overlain by massive, compact limestone of Santonian age. That 50-m-thick limestone is in turn overlain by well-bedded bioclastic limestone of Campanian or Maastrichtian age, rich with rudist fossils. Fracture fillings in the bauxite orebody are up to 1 m thick and consist of bluish-gray-green pyrite and marcasite (20%) with bohmite, diaspore, and anatase. These sulfide veins crosscut and offset the strata-bound sulfide zones. Sulfur for the sulfides was derived from the bacterial reduction of seawater sulfate, and Fe was derived from alteration of oxides in the bauxite. Iron sulfides do not occur within either the immediately underlying or overlying limestone. The platform limestone and shale that host the bauxite deposits formed at a passive margin of the Tethys Ocean. Extensive vegetation developed on land as the result of a humid climate, thereby creating thick and acidic soils and enhancing the transport of large amounts of organic matter to the ocean. Alteration of the organic matter provided CO2 that contributed to formation of a relatively 12C-rich marine footwall limestone. Relative sea-level fall resulted from strike-slip faulting associated with closure of the ocean and local uplift of the passive margin. That uplift resulted in karstification and bauxite formation in topographic lows, as represented by the Do[g]ankuzu and Morta[s] deposits. During stage 1 of bauxite formation, Al, Fe, Mn, and Ti were mobilized from deeply weathered aluminosilicate parent rock under acidic conditions and accumulated as hydroxides at the limestone surface owing to an increase in pH. During stage 2, Al, Fe, and Ti oxides and clays from the incipient bauxite (bauxitic soil) were transported as detrital phases and accumulated in the fault-controlled depressions and sinkholes. During stage 3, the bauxitic material was concentrated by repeated desilicification, which resulted in the transport of Si and Mn to the ocean through a well-developed karst drainage system. The transported Mn was deposited in offshore muds as Mn carbonates. The sulfides also formed in stage 3 during early diagenesis. Transgression into the foreland basin resulted from shortening of the ocean basin and nappe emplacement during the latest Cretaceous. During that time bioclastic limestone was deposited on the nappe ramp, which overlapped bauxite accumulation

Formation of Willemite in Hydrothermal Environments, 2003, Brugger J, Mcphail Dc, Wallace M, Waters J,
Willemite (zinc silicate) is the main zinc mineral in some carbonate-hosted ore deposits (e.g., Franklin, New Jersey; Vazante, Brazil; Beltana, South Australia; Kabwe, Zambia). Recent interest in these unconventional zinc deposits has increased because of high zinc grades that exceed 40 wt percent, relatively low environmental impact of ore processing owing to the lack of acid-generating sulfides in the waste, and advances in ore processing technologies. In the past, most metallogenic studies proposed formation of willemite deposits by supergene or hypogene alteration of preexisting sulfide deposits. However, recent data on the Vazante, Beltana, and Kabwe deposits indicate willemite crystallization at temperatures in excess of 150{degrees}C, raising the possibility of primary precipitation from hydrothermal fluids. We use numerical geochemical modeling to examine the formation of willemite under hydrothermal conditions. Activity-activity diagrams reveal that, in the presence of dissolved sulfur and quartz, willemite instead of sphalerite will precipitate under oxidizing (e.g., hematite-stable, sulfate-predominant) and alkaline (pH higher than K feldspar-muscovite-quartz) conditions. Willemite also becomes more stable, relative to sphalerite, at high temperature, and willemite can coexist with magnetite at 300{degrees}C. The stabilities and solubilities of sphalerite, willemite, smithsonite, hydrozincite, and zincite were calculated for wide ranges of temperature (25{degrees}-300{degrees}C), chloride concentration, dissolved sulfur and carbon concentrations, pH, quartz saturation, and oxidation potential. Plots of the solubility of the different minerals as a function of two variables (e.g., temperature and redox state; pH and redox state) allow us to predict the effects of changing chemical conditions, which in turn permits an estimate of the efficiency of particular precipitation processes. Cooling is an effective process for precipitating sphalerite but not willemite, whereas pH increase (e.g., by acidic fluids reacting with carbonates) is effective for precipitating willemite but not sphalerite. Dynamic geochemical models that simulate physicochemical processes are used to understand the formation of the Beltana willemite deposit in the Adelaide geosyncline of South Australia. This small, high grade deposit (850,000 t at 36% Zn) is hosted in dolomite of the Cambrian Ajax Limestone, next to a tectonic contact with the diapiric, halite-bearing clastic sediments of the Callanna Group. The orebody is associated with hematite alteration and is characterized by the total absence of sulfides; willemite is the only zinc ore mineral, and the arsenate hedyphane (Ca2Pb3[AsO4]3Cl) is the main lead mineral. The model results show that willemite will precipitate in response to water-rock interaction and fluid mixing processes at temperatures above 120{degrees}C. The presence of arsenate in the hydrothermal fluid is likely to have been important at Beltana; in arsenate-absent models sulfate is reduced to sulfide by the precipitation of ferrous iron as hematite, resulting in the precipitation of sphalerite and galena. In contrast, in models including arsenate the reduction of sulfate to sulfide is inhibited and willemite is predicted to precipitate

Geology of the Beltana Willemite Deposit, Flinders Ranges, South Australia, 2003, Groves Iain M. , Carman Cris E. , Dunlap W. James,
Beltana is a high-grade hypogene willemite deposit hosted in Lower Cambrian carbonate rocks in the Arrowie basin, northern Flinders Ranges, South Australia. It is situated adjacent to a major growth fault on the basin margin. Ooid grainstone units of the Woodendinna Dolomite and units of Archaeocyathid-rich Wilkawillina Limestone are the main host lithologies. Lead minerals in subeconomic quantities are also present in karstic collapse breccias surrounding the willemite orebodies. Mineralization is structurally controlled and associated with brecciation and extensive hematite-rich hydrothermal zincian dolomitization. Ore minerals include willemite and coronadite with lesser mimetite, hedyphane, and smithsonite. Late-stage gangue minerals include manganocalcite, dolomite, and minor quartz. The texture of willemite is heterogeneous, resulting from various depositional mechanisms such as partial to massive replacement of the carbonate host rock, internal sedimentation, fracture fill, brecciation, and vein fill. On the periphery of the deposit, smithsonite formed by weathering of willemite. Beltana is centered on a karstic collapse breccia that extends at least 100 m vertically, formed in part through corrosion by acidic ore solutions. The geochemical signature of the orebody includes high levels of Zn, Pb, Cd, As, and Mn. Notably, silver is absent from the deposit and sulfur concentrations are low (<20 ppm). Fluid inclusion studies yield a low minimum temperature range of ore deposition between 50{degrees} and 170{degrees}C. K-Ar dating of coronadite associated with the willemite orebody indicates an age of formation of ~ 435 {} 5 Ma. Premining resources of willemite ore were 850,000 t at 36 percent Zn, and an associated body of subeconomic lead contained more than 800,000 t at 8.9 percent Pb, 3.9 percent Zn and 1 percent As. The deposit has some similarities with Mississippi Valley-type deposits but differs in ore and alteration mineral assemblages

Geology and Geochemistry of the Reocin Zinc-Lead Deposit, Basque-Cantabrian Basin, Northern Spain, 2003, Velasco Francisco, Herrero Jose Miguel, Yusta Inaki, Alonso Jose Antonio, Seebold Ignacio, Leach David,
The Reocin Zn-Pb deposit, 30 km southwest of Santander, Spain, occurs within Lower Cretaceous dolomitized Urgonian limestones on the southern flank of the Santillana syncline. The Reocin deposit is one of the largest known strata-bound, carbonate-hosted, zinc-lead deposits in Europe. The total metal endowment of the deposit, including past production and remaining reserves, is 62 Mt of ore grading 8.7 percent Zn and 1.0 percent Pb. The epigenetic mineralization consists of sphalerite and galena, with lesser marcasite and trace pyrite with dolomite as gangue. Microprobe analyses of different generations of dolomite revealed nonstoichiometric compositions with various amounts of iron (up to 14 mol % of FeCO3). Replacement of host dolomite, open-space filling of fractures, and cementation of breccias derived from dissolution collapse are the principal types of ore occurrence. Detailed cross-section mapping indicates a stratigraphic and structural control on the deposit. A stratiform morphology is present in the western part of the orebody (Capa Sur), whereas mineralization in the eastern part is highly discordant but strata bound (Barrendera). Stratigraphic studies demonstrate that synsedimentary tectonic activity, related to the rifting of the North Atlantic (Bay of Biscay), was responsible for variation in sedimentation, presence of unconformities (including paleokarsts), local platform emergence and dolomitization along the N60 fault trend. In the Reocin area, two stages of dolomitization are recognized. The first stage is a pervasive dolomitization of the limestone country rocks that was controlled by faulting and locally affected the upper part of the Aptian and the complete Albian sequence. The second dolomitization event occurred after erosion and was controlled by karstic cavities. This later dolomitization was accompanied by ore deposition and, locally, filling of dolomite sands and clastic sediments in karstic cavities. The circulation of hydrothermal fluids responsible for sulfide deposition and the infilling of karst cavities were broadly contemporaneous, indicating a post-Albian age. Vitrinite reflectance data are consistent with previously measured fluid inclusion temperatures and indicate temperatures of ore deposition that were less than 100{degrees}C. Carbon and oxygen isotopic data from samples of regional limestone, host-rock dolostone and ore-stage dolomite suggest an early hydrothermal alteration of limestone to dolostone. This initial dolomitization was followed by a second period of dolomite formation produced by the mixing of basinal metal-rich fluids with local modified seawater. Both dolomitization events occurred under similar conditions from fluids exhibiting characteristics of basinal brines. The{delta} 34S values of sulfides are between -1.8 and .5 per mil, which is consistent with thermochemical sulfate reduction involving organic matter as the main source of reduced sulfur. Galena lead isotope compositions are among the most radiogenic values reported for Zn-Pb occurrences in Europe, and they are distinct from values reported for galena from other Basque-Cantabrian deposits. This suggests that a significant part of the lead was scavenged from the local underlying Asturian sediments. The stratigraphic and structural setting, timing of epigenetic mineralization, mineralogy, and isotopic geochemistry of sulfide and gangue minerals of the Reocin deposit are consistent with the features of most of Mississippi Valley-type ore deposits

Rock Mechanics for Underground Mining, 2004, Brady B. M. G. , Brown E. T.

The Genesis of the Hope Downs Iron Ore Deposit, Hamersley Province, Western Australia, 2006, Lascelles Desmond F. ,
The banded iron formation (BIF)-hosted Hope Downs high-grade hematite ore deposits are situated within the Marra Mamba Iron Formation with subsidiary deposits in the Brockman Iron Formation of the Archean to Proterozoic Hamersley Group of Western Australia. The main orebody extends to 260 m below the surface and is unusually rich in martite (pseudomorphous hematite after magnetite) and poor in limonite and goethite compared to other ore deposits of the Marra Mamba Iron Formation. The high-grade hematite ore is mainly within the Newman Member but also occurs in parts of the Nammuldi Member together with low-grade limonitic ore that becomes high grade after calcining. Karst erosion of the overlying Wittenoom Formation has produced steep-sided buried valleys adjacent to the in situ orebodies that contain thick deposits (<160 m) of goethitic and sideritic sediments, including remnants of Robe Pisolite Formation, bedded siderite, hematite gravels, red ochreous detrital material, and enriched scree deposits that are additional sources of ore. The ore consists of low phosphorous martite-limonite-goethite derived from chert-free BIF by supergene weathering. No evidence of the complete carbonate replacement of chert has been found at Hope Downs nor were any traces of preexisting chert bands seen in the ore, despite the abundance of chert bands in BIF elsewhere. A variety of textures and composition shown by cherty BIF adjacent to the orebodies is described from which the origin of the chert-free BIF is inferred, including sedimentary structures consistent with density-current deposition. A model is presented for the origin of the host iron formation and the ore deposits, in which density currents transported reworked iron silicates and hydroxides in colloidal suspension onto an unstable sea floor. The amorphous silica produced during diagenesis of Al-poor iron silicates formed the characteristic chert bands of BIF but some of the hydrous amorphous silica was lost prior to lithification to form chert-free BIF. Weathering of the chert-free BIF produced the high-grade hematite ore that is exposed today

Results 1 to 6 of 6
You probably didn't submit anything to search for