MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology

Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That specific conductance is a measure of the ability of water to conduct an electrical current expressed in micromhos per centimeter at 25řc [22].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for paleokarstification (Keyword) returned 3 results for the whole karstbase:
Paleokarsts in late Precambrian and Ordovician carbonates, Kalpin-Shaya uplift zone, Tarim basin, China, 1999, Cao Hs, Yang Jd, Wang Dn,
The reservoir properties in the Kalpin-Shaya uplift zone, Tarim basin, are a common concern with regards to petroleum exploration and reservoir evaluation alike. Dissolution and paleokarst have a positive impact on the porosity as well as the storage capacity of carbonate reservoirs because the secondary porosity related to dissolution and paleokarst serves as excellent traps for migrating hydrocarbons. In order to evaluate the reservoir characteristics reasonably in the late Precambrian and Ordovician carbonate rocks, the secondary porosity, which was produced by dissolution and paleokarstification in late diagenetic stage. should be studied because the primary pores were mostly destroyed during the early-middle diagenesis due to serious compaction and multi-cementation. Carbonate rocks ate among the most important collectors of oil and gas accumulations in the world Important oil and gas reservoirs in paleokarst-containing carbonate rocks are known worldwide because micropores and megapores, such as solution openings, solution fissures, funnels, sinkholes. and caves, serve as the fundamentally important secondary porosity in those rocks. Several wells revealed that the Kalpin-Shaya region is a prospective target for oil and gas exploration. The reservoir carbonates of the Kalpin-Shaya uplift zone in the northern Tarim include dolomites and limestones. The best dolomite reservoirs are in the late Precambrian Qigebulake Formation (Z(2)(2)), the lower Qiulitage Group (is an element of(2-3)), the upper Qiulitage Group (O-1(1)), smd the Xiaoerbulake Formation (is an element of(1)), whereas limestone reservoirs are in the middle-upper formations of the upper Qiulitage Group (O-1(2-3)). On the basis of the study of petrology, paleontology, and stratigraphy from field work and well core data, the pore spaces within the Precambrian and Ordovician carbonate reservoirs are studied with the aim of proving that all secondary pores are controlled by dissolution and paleokarst

Organic geochemistry of paleokarst-hosted uranium deposits, South China, 2000, Min M. Z. , Meng Z. W. , Sheng G. Y. , Min Y. S. , Liu X. ,
The paleokarst-hosted uranium deposits in organic-matter, clay-rich Devonian-Carboniferous carbonates are an economically important, new type of uranium deposit in China. The organic matter intimately associated with the uranium mineralization in this type of deposit has been characterized by petrographic, isotopic, gas chromatographic, pyrolysis-gas chromatographic, infrared spectroscopic and elemental geochemical methods. Comparing genetic types of the organic matter in unmineralized and mineralized samples indicates that no fundamental differences are found. The organic matter is chiefly of marine origin and contains a minor terrestrial component. The immature nature of the indigenous organic matter in the unmineralized samples shows generally a low-temperature history (less than or equal to max. 65 degrees C), and geologic data show a shallow maximal burial depth. By combining the organic geochemistry with the geological data, U-Pb dating and temperature determinations, an overall formation process for this type of uranium deposit is deduced. The formation of the paleokarst-hosted uranium deposits in South China is the result of: (1) repeated paleokarstifications of the Devonian and Carboniferous organic, clay-rich carbonate along the faults and unconformities between different strata because of the Hercynian and Yanshanian regional tectonism, and extensive formation of solution-collapse, solution-fault breccias; (2) accumulation of organic matter and clays in the paleocaverns and matrix of the breccias, fixation and adsorption of uranium by the organic matter and clays from the paleokarst waterflows that leached metals from the uranium-bearing host carbonates during their passage towards the karst zones, (3) reduction of uranium by the organic matter and formation of protore and low-grade ore; (4) circulation of heated formational waters and deep circulating, uraniferous meteoric waters by tectonic pumping, reworking the uranium-rich, paleocave-fillings, protore and low-grade ore, reduction and formation of primary uranium minerals (uraninite and coffinite) because of the reducing environment resulting from organic matter and sulfide. (C) 2000 Elsevier Science B.V. Ail rights reserved

Preservation and burial of ancient karst., 2013, Osborne, R. A. L.

Ancient karst features can be preserved by burial, filling, or by occurring in areas with extremely slow denudation. Although the terms ‘paleokarst’, ‘relict karst’,‘buried karst’, and ‘fossil karst’ have caused much confusion, paleokarst, buried karst, and relict karst can be defined in terms useful to karst geomorphologists and cave scientists. The term ‘fossil karst’ is best abandoned. Burial and paleokarstification are not necessarily the end of karst. Ancient features may be exhumed and reactivated. Karst ends with denudation at the Earth’s surface. Unroofed caves are a particular feature of karst denudation. Most ancient karst features may be preserved by filling, burial, and exhumation. In unusual conditions, karst features have survived at the surface since the Mesozoic. Burial, exhumation, and slow denudation may not be sufficient for extreme survival; relative vertical movement may be required. As caves and many other karst landforms are negative features, they are prone to filling by a range of materials, making cave sediments and paleokarst deposits quite diverse. Whole karst landscapes can be buried and evidence of burial can be recorded in the diagenesis of sediments. Although filled and unfilled caves can survive shallow burial, deep burial can crush caves, forming crackle breccia. Exhumation can occur from the surface following uplift or from below following hypogene speleogenesis. Preservation, burial, and exhumation of ancient karst have two unexpected consequences. Caves can be older than the landscapes in which they occur and stalagmites can be the longest surviving karst features


Results 1 to 3 of 3
You probably didn't submit anything to search for