MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_left.php on line 5
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That manometer is a pressure measuring device for determining the hydraulic head developed by a flowing fluid [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_right.php on line 7
What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for rapidcreekite (Keyword) returned 2 results for the whole karstbase:
THE HYPOGENE ORIGIN OF DIANA CAVE (ROMANIA) AND ITS SULFURIC ACID WEATHERING ENVIRONMENT, 2013,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Onac B. P. Puș, Caș, C. M. Effenberger H. S. Povară, I. Wynn J. G.

 

The Diana Cave in SW Romania develops along a fault line at the contact between Late Jurassic limestones and Early Cretaceous marls. It formed through corrosion of bedrock (limestone and marls) by sulphuric acid-rich steam condensate resulted after oxidation/hydrolysis of H2S escaping from the thermo-mineral water emerging from depth in the cave. The sulfuric acid causes a strong acid sulfate weathering of the bedrock generating a sulfate-dominated secondary cave-mineral assemblage that includes gypsum, anhydrite, bassanite, epsomite, alunite, and halotrichite group minerals. Closely associated with these minerals are two rare sulfate species, namely rapidcreekite and tamarugite that represent new occurrences in limestone caves. Traditional X-ray diffraction and single crystal analyses were used along with scanning electron microscope (SEM), stable isotope, and electron microprobe investigations to fully characterize the primary and secondary speleogenetic by-products of Diana Cave.


Rapidcreekite in the sulfuric acid weathering environment of Diana Cave, Romania, 2013,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Onac B. P. Effenberger H. S. Wynn J. G. Povară, I.

The Diana Cave in SW Romania develops along a fault line and hosts a spring of hot (Tavg = 51 °C), sulfate-rich, sodium-calcium-chloride bearing water of near-neutral pH. Abundant steam and H2S rises from the thermal water to condensate on the walls and ceiling of the cave. The sulfuric acid produced by H2S oxidation/hydrolysis causes a strong acid-sulfate weathering of the cave bedrock generating a sulfate-dominated mineral assemblage that includes rapidcreekite, Ca2(SO4)(CO3)•4H2O closely associated with gypsum and halotrichite group minerals. Rapidcreekite forms bundles of colorless tabular orthorhombic crystals elongated along [001] and reaching up to 1.5 mm in length. For verifying the hydrogen bond scheme and obtaining crystal-chemical details of the carbonate group a single-crystal structure refinement of rapidcreekite was performed. Its unit-cell parameters are: a = 15.524(2), b = 19.218(3), c = 6.161(1) Å; V = 1838.1(5) Å3, Z = 8, space group Pcnb. Chemi¬cal composition (wt%): CaO 35.65, SO3 24.97, CO2 13.7, H2O 23.9, Na2O 0.291, MgO 0.173, Al2O3 0.07, total 98.75%. The empirical formula, based on 7 non-water O atoms pfu, is: Ca1.98Na0.029Mg0.013 Al0.004(S0.971 O4)(C0.97O3)•4.13H2O. The d34S and d18O values of rapidcreekite and other cave sulfates range from 18 to 19.5‰ CDT and from –9.7 to 7.8‰ SMOW, respectively, indicating that the source of sulfur is a marine evaporite and that during hydration of the minerals it has been an abundant 18O exchange with percolating water but almost no oxygen is derived from O2(aq). This is the first descrip¬tion of rapidcreekite from a cave environment and one of the very few natural occurrences worldwide. We also report on the mineral stability and solubility, parameters considered critical to understand the co-precipitation of carbonates and sulfates, a process that has wide applications in cement industry and scaling prevention.


Results 1 to 2 of 2
You probably didn't submit anything to search for