Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_right.php on line 7
Search in KarstBase
Malaysian caves have been known to man since prehistoric times, when they were used as shelters, campsites or places of refuge. The oldest remains found in Peninsular Malaysia are a human skeleton dated at 11.000 years old. But it wasnot until the 19th century that records appear of caves being visited, generally by European visitors for recreation, curiosity or research. Research generally began in the 1880's, mainly by British colonial officers stationed in Malaya. The caves at Batu Caves were "discovered' and made known to Europeans in 1878. This article lists some of the visitors and describes some of the early research.
Understanding past environmental changes in tropical rainforests is extremely important in order to assess the response of such environments to present and future climatic changes and understand causes and the present patterns of biodiversity.
Earlier hypothesis on the origin of biodiversity have stressed the role of past climatic changes in promoting speciation. According to the “refuge hypothesis” (Haffer, 1982), dry periods could have led to forest fragmentation, isolating more humid forested zones (called refuges) within an environment largely dominated by savannas. The refuge hypothesis does not assign timescales for rainforest fragmentation, although recent studies have suggested that speciation could have occurred over timescales of millions of years (Knapp and Mallet, 2003). Although the focus of heavy criticism (Colinvaux, et a., 2000), the refuge hypothesis has generated a large amount of research. In general, pollen studies (Colinvaux, et a., 1996, Haberle and Maslin, 1999) tend to support a continuous forest cover throughout late Quaternary climatic shifts, although large variations in rainfall have also been demonstrated by other pollen and isotopic studies (van der Hammen and Absy, 1994; Maslin and Burns, 2000).
Amazon and Atlantic rainforests are the two major forested zones in South America. Amazon rainforest, the largest rainforest in the world, comprise a total original area of 4.1 million km2 and is renowned for hosting the large biodiversity in the world (30% of all the world’s known plant and animal species). Atlantic rainforest, also a biodiversity hotspot, occurs along the coast and has been subjected to heavy deforestation since European arrival. Nowadays only c. 7% of its original forested area of 1.3 million km2 remains. These two rainforests are separated by drought-prone semi-arid northeastern (NE) Brazil. Our study does not address the refuge hypothesis directly although it sheds new light on the dynamics of forest expansion in the past as well as indicates alternative ways of promoting speciation. It has long been hypothesized, due to botanical (Mori, 1989; Andrade-Lima, 1982) and faunistic (Costa, 2003) similarities, that the Amazon and Atlantic rainforests were once linked in the past. Although numerous connecting routes have been postulated (Bigarella, et al, 1975; Por, 1992; De Oliveira, et al, 1999), the timing of forest expansion and their possible recurrence have remained elusive.
The study area lies in the driest portion of NE Brazil “dry corridor”, close to the village of Laje dos Negros, northern state of Bahia. Mean annual precipitation is around 480 mm and potential evapotranspiration is in excess of 1,400 mm/year (Fig.1). Present vegetation comprises a low arbustive scrubland known locally as caatinga. The area contains a well-developed underground karst (Auler and Smart, 2003) with abundant secondary calcite precipitates, both underground (speleothems) and on the surface (travertines).
Lapa Nova is a dolomitic cave about 4.5 km long located in northwestern Minas Gerais state, Brazil. The cave experiences intense tourism, concentrated over a single period of the year, during the Feast of Our Lady of Lapa. In order to evaluate the impacts felt by the invertebrate community from this tourism, a new methodology was proposed. Four types of areas (intense visitation area, outlying visitation areas, moderate visitation areas and no-visitation areas) were sampled for invertebrates. There was one sampling prior and another on the last day of the 128th feast, to evaluate the effects of visitation on cave-dwelling invertebrates. Results show that invertebrate populations residing in more intensely visited areas of the cave undergo changes in distribution following the event. As a consequence of tourism, invertebrates shift to outlying locations from the visited area, which serve as refuges to the communities. Apparently, the fact that there are places inside Lapa Nova inaccessible to tourists reduces the impact suffered by the invertebrate community, as those sites serve as refuges for cave-dwelling organisms during the pilgrimage. A proper management plan was devised for the tourism/religious use of the cave. It consists basically of delimiting marked pathways for tourists, allowing invertebrates to seek shelter at locations outside visited areas and keeping no-visitation areas off-limits to tourism based on the results of the visitation effects on cave-dwelling invertebrates.
Species composition and the vegetation pattern of the understory were investigated in different sized solution sinkholes in a woodland area of the Mecsek Mountains (southern Hungary). Vegetation data together with topographic variables were collected along transects to reveal the vegetation patterns on the slopes, and a species list was compiled for each sinkhole. The results indicate that the vegetation pattern significantly correlates with sinkhole size. In smaller sinkholes, vegetation does not change substantially along the transects; in larger sinkholes, however, vegetation inversion is pronounced. We also found that sinkhole size clearly influences the number of vascular plant species, in accordance with the well-known relationship between species number and area. In the forest landscape, many medium-sized and large sinkholes have developed into excellent refuge areas for glacial relicts, mountain, and wet-woodland plant species.
This research is a contribution to the study of subterranean biodiversity in karst areas of Portugal, towards its conservation.
The relative inaccessibility of the subterranean environment is a challenge for the study of its fauna, often accessible only in caves but more widely distributed. The subterranean animals are among the most rare, threatened and worldwide underprotected, often by the simple fact of being unknown.
Karst areas of Portugal occupy a considerable part of the territory and harbor more than 2000 caves. The complex biogeographical history of the Iberian Peninsula allowed the survival of several relict arthropod refugees in the subterranean environment.
Subterranean invertebrates have been ignored, as for as the protection of karst systems are concerned in Portugal, largely because knowledge was scarce and disorganized. Reviewing all the bibliographic sources about subterranean fauna from Portugal and listing troglobiont and stygobiont species and locations, was essential to understand the state of knowledge of species richness and the biogeography and conservation status for the studied areas.
In order to understand subterranean biodiversity patterns in karst areas from Portugal, one year of intense fieldwork was performed in more than 40 caves from 14 karst units. Several new species for science were discovered and 7 taxa comprising 2 new genera and 5 new species were described.
Bearing in mind that spatial distribution of subterranean species is crucial to ecological research and conservation, the distribution of hypogean species, from Portuguese karst areas, was mapped using geographic information systems. Also, its subterranean richness was compared with other areas of the world and missing species were estimated on a regional scale. The subterranean biodiversity patterns were analyzed, and several factors were tested to explain richness patterns. Evapotranspiration and the consequent high productivity on the surface may be determinant in the species richness in the different karst units of Portugal, but the depth of the caves and the unique geological features of every massif seemed to play a more important role.
In order to evaluate the tolerance of organisms to groundwater contamination, the acute toxicity of two substances were tested on stygobiont crustaceans with different degrees of troglomorphism. Our study showed that the high levels of endemism contribute to remarkably different toxicological responses within the same genus.
The major problems related to conservation of subterranean habitats were associated to direct destruction and their contamination. These ecosystems lack of specific protection, implying an adequate management of surface habitats and the establishment of priority areas. Integrating all the previous information, this study establishes a ranking of sites for conservation of subterranean fauna in karst areas of Portugal.This research is a contribution to the study of subterranean biodiversity in karst areas of Portugal, towards its conservation.
The relative inaccessibility of the subterranean environment is a challenge for the study of its fauna, often accessible only in caves but more widely distributed. The subterranean animals are among the most rare, threatened and worldwide underprotected, often by the simple fact of being unknown.
Karst areas of Portugal occupy a considerable part of the territory and harbor more than 2000 caves. The complex biogeographical history of the Iberian Peninsula allowed the survival of several relict arthropod refugees in the subterranean environment.
Subterranean invertebrates have been ignored, as for as the protection of karst systems are concerned in Portugal, largely because knowledge was scarce and disorganized. Reviewing all the bibliographic sources about subterranean fauna from Portugal and listing troglobiont and stygobiont species and locations, was essential to understand the state of knowledge of species richness and the biogeography and conservation status for the studied areas.
In order to understand subterranean biodiversity patterns in karst areas from Portugal, one year of intense fieldwork was performed in more than 40 caves from 14 karst units. Several new species for science were discovered and 7 taxa comprising 2 new genera and 5 new species were described.
Bearing in mind that spatial distribution of subterranean species is crucial to ecological research and conservation, the distribution of hypogean species, from Portuguese karst areas, was mapped using geographic information systems. Also, its subterranean richness was compared with other areas of the world and missing species were estimated on a regional scale. The subterranean biodiversity patterns were analyzed, and several factors were tested to explain richness patterns. Evapotranspiration and the consequent high productivity on the surface may be determinant in the species richness in the different karst units of Portugal, but the depth of the caves and the unique geological features of every massif seemed to play a more important role.
In order to evaluate the tolerance of organisms to groundwater contamination, the acute toxicity of two substances were tested on stygobiont crustaceans with different degrees of troglomorphism. Our study showed that the high levels of endemism contribute to remarkably different toxicological responses within the same genus.
The major problems related to conservation of subterranean habitats were associated to direct destruction and their contamination. These ecosystems lack of specific protection, implying an adequate management of surface habitats and the establishment of priority areas. Integrating all the previous information, this study establishes a ranking of sites for conservation of subterranean fauna in karst areas of Portugal.
This research is a contribution to the study of subterranean biodiversity in karst areas of Portugal, towards its conservation.
The relative inaccessibility of the subterranean environment is a challenge for the study of its fauna, often accessible only in caves but more widely distributed. The subterranean animals are among the most rare, threatened and worldwide underprotected, often by the simple fact of being unknown.
Karst areas of Portugal occupy a considerable part of the territory and harbor more than 2000 caves. The complex biogeographical history of the Iberian Peninsula allowed the survival of several relict arthropod refugees in the subterranean environment.
Subterranean invertebrates have been ignored, as for as the protection of karst systems are concerned in Portugal, largely because knowledge was scarce and disorganized. Reviewing all the bibliographic sources about subterranean fauna from Portugal and listing troglobiont and stygobiont species and locations, was essential to understand the state of knowledge of species richness and the biogeography and conservation status for the studied areas.
In order to understand subterranean biodiversity patterns in karst areas from Portugal, one year of intense fieldwork was performed in more than 40 caves from 14 karst units. Several new species for science were discovered and 7 taxa comprising 2 new genera and 5 new species were described.
Bearing in mind that spatial distribution of subterranean species is crucial to ecological research and conservation, the distribution of hypogean species, from Portuguese karst areas, was mapped using geographic information systems. Also, its subterranean richness was compared with other areas of the world and missing species were estimated on a regional scale. The subterranean biodiversity patterns were analyzed, and several factors were tested to explain richness patterns. Evapotranspiration and the consequent high productivity on the surface may be determinant in the species richness in the different karst units of Portugal, but the depth of the caves and the unique geological features of every massif seemed to play a more important role.
In order to evaluate the tolerance of organisms to groundwater contamination, the acute toxicity of two substances were tested on stygobiont crustaceans with different degrees of troglomorphism. Our study showed that the high levels of endemism contribute to remarkably different toxicological responses within the same genus.
The major problems related to conservation of subterranean habitats were associated to direct destruction and their contamination. These ecosystems lack of specific protection, implying an adequate management of surface habitats and the establishment of priority areas. Integrating all the previous information, this study establishes a ranking of sites for conservation of subterranean fauna in karst areas of Portugal.This research is a contribution to the study of subterranean biodiversity in karst areas of Portugal, towards its conservation.
The relative inaccessibility of the subterranean environment is a challenge for the study of its fauna, often accessible only in caves but more widely distributed. The subterranean animals are among the most rare, threatened and worldwide underprotected, often by the simple fact of being unknown.
Karst areas of Portugal occupy a considerable part of the territory and harbor more than 2000 caves. The complex biogeographical history of the Iberian Peninsula allowed the survival of several relict arthropod refugees in the subterranean environment.
Subterranean invertebrates have been ignored, as for as the protection of karst systems are concerned in Portugal, largely because knowledge was scarce and disorganized. Reviewing all the bibliographic sources about subterranean fauna from Portugal and listing troglobiont and stygobiont species and locations, was essential to understand the state of knowledge of species richness and the biogeography and conservation status for the studied areas.
In order to understand subterranean biodiversity patterns in karst areas from Portugal, one year of intense fieldwork was performed in more than 40 caves from 14 karst units. Several new species for science were discovered and 7 taxa comprising 2 new genera and 5 new species were described.
Bearing in mind that spatial distribution of subterranean species is crucial to ecological research and conservation, the distribution of hypogean species, from Portuguese karst areas, was mapped using geographic information systems. Also, its subterranean richness was compared with other areas of the world and missing species were estimated on a regional scale. The subterranean biodiversity patterns were analyzed, and several factors were tested to explain richness patterns. Evapotranspiration and the consequent high productivity on the surface may be determinant in the species richness in the different karst units of Portugal, but the depth of the caves and the unique geological features of every massif seemed to play a more important role.
In order to evaluate the tolerance of organisms to groundwater contamination, the acute toxicity of two substances were tested on stygobiont crustaceans with different degrees of troglomorphism. Our study showed that the high levels of endemism contribute to remarkably different toxicological responses within the same genus.
The major problems related to conservation of subterranean habitats were associated to direct destruction and their contamination. These ecosystems lack of specific protection, implying an adequate management of surface habitats and the establishment of priority areas. Integrating all the previous information, this study establishes a ranking of sites for conservation of subterranean fauna in karst areas of Portugal.
Karst environments can be grouped into three broad categories, based on their vertical position in the landscape. There are surface habitats, ones exposed to light; there are shallow subterranean (aphotic) habitats oft en with small to intermediate sized spaces; there are deep subterranean habitats (caves) with large sized spaces. Faunal records are most complete for caves, and on a global basis, more than 10,000 species are limited to this habitat. Hundreds of other species, especially bats, depend on caves for some part of their life cycle. A large, but most unknown number of species are limited to shallow subterranean habitats in karst, such as epikarst and the milieu souterrain superficiel. Species in both these categories of habitats typically show a number of morphological adaptations for life in darkness, including loss of eyes and pigment, and elaboration of extra-optic sensory structures. Surface habitats, such as sinkholes, karst springs, thin soils, and rock faces, are habitats, but not always recognized as karst habitats. Both aphotic karst habitats and twilight habitats (such as open air pits) may serve as important temporary refuges for organisms avoiding temperature extremes on the surface.