MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology

Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That Darcy-Weisbach equation is an empirical equation given as which states that in contrast to laminar flow, the average volumetric discharge of flow is directly proportional to the square root of the driving force and that the friction loss is equal to the hydraulic head [5]. note: q=discharge, a=crosssectional area, r=hydraulic radius of the conduit, g=gravitational acceleration, f=some friction factor, dh/dl=gradient, and i have attached a negative sign to indicate that ground-water flow occurs in the direction of decreasing head. in most instances, a negative sign is not included because it is not possible to take the square root of a negative number.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for rising water (Keyword) returned 12 results for the whole karstbase:
Holocene stratigraphy of Cobweb Swamp, a Maya wetland in northern Belize, 1996, Jacob J. S. , Hallmark C. T. ,
We investigated the soils and sediments of Cobweb Swamp, adjacent to the archaeological site of Colha in northern Belize, to adumbrate landscape evolution and the impact of the ancient Maya on a tropical palustrine wetland. The Cobweb section exposes a complex and dynamically evolving landscape, with a rich interplay between natural and human forces. The Cobweb depression probably formed as a karstic doline or polje in interbedded limestone and marl of late Tertiary or Pleistocene age. During the latest Pleistocene, a terrestrial marsh covered most of the depression. Slope wash and colluviation from adjacent slopes impacted the depression during the early Holocene, possibly in response to a drier and cooler climate reported to have occurred in the region during this time. After ca. 5600 B.P., the Cobweb depression was affected by relatively rapidly rising sea levels in the area, and a brackish lagoon filled the basin. By 4800 B.P., a peat filled in the lagoon, probably because precipitation of a marl in the lagoon coupled with decreasing rates of sea-level rise enabled emergent vegetation to encroach the shallowing waters. Humans first began to affect the landscape when this peat was at the surface. Massive deforestation, resulting in increased runoff and rising water levels, is the most likely explanation for a fresh-water lagoon that again inundated the Cobweb depression between 3400 and 500 B.P. The Maya Clay was deposited on the edge of this lagoon as the result of upland erosion, almost as soon as deforestation began, but the bulk of the deposit was coincident with the sudden collapse of the Classic Maya civilization ca. 1000 B.P., suggesting that significant environmental degradation was associated with the demise of the Classic Maya. Peat began to fill the Cobweb lagoon sometime before 500 B.P., probably the result of shallower water levels from decreasing runoff resulting from reforestation after abandonment by the Maya. ------------------------------------------------------

Microbiology and geochemistry in a hydrogen-sulphide-rich karst environment, 2000, Hose Louise D. , Palmer Arthur N. , Palmer Margaret V. , Northup Diana E. , Boston Penelope J. , Duchene Harvey R. ,
Cueva de Villa Luz, a hypogenic cave in Tabasco, Mexico, offers a remarkable opportunity to observe chemotrophic microbial interactions within a karst environment. The cave water and atmosphere are both rich in hydrogen sulphide. Measured H2S levels in the cave atmosphere reach 210 ppm, and SO2 commonly exceeds 35 ppm. These gases, plus oxygen from the cave air, are absorbed by freshwater that accumulates on cave walls from infiltration and condensation. Oxidation of sulphur and hydrogen sulphide forms concentrated sulphuric acid. Drip waters contain mean pH values of 1.4, with minimum values as low as 0.1.The cave is fed by at least 26 groundwater inlets with a combined flow of 200-300 l/s. Inlet waters fall into two categories: those with high H2S content (300-500 mg/l), mean PCO2=0.03-0.1 atm, and no measurable O2; and those with less than 0.1 mg/l H2S, mean PCO2=0.02 atm, and modest O2 content (up to 4.3 mg/l). Both water types have a similar source, as shown by their dissolved solid content. However, the oxygenated water has been exposed to aerated conditions upstream from the inlets so that original H2S has been largely lost due to outgassing and oxidation to sulphate, increasing the sulphate concentration by about 4%. Chemical modelling of the water shows that it can be produced by the dissolution of common sulphate, carbonate, and chloride minerals.Redox reactions in the cave appear to be microbially mediated. Sequence analysis of small subunit (16S) ribosomal RNA genes of 19 bacterial clones from microbial colonies associated with water drips revealed that 18 were most similar to three Thiobacilli spp., a genus that often obtains its energy from the oxidation of sulphur compounds. The other clone was most similar to Acidimicrobium ferrooxidans, a moderately thermophilic, mineral-sulphide-oxidizing bacterium. Oxidation of hydrogen sulphide to sulphuric acid, and hence the cave enlargement, is probably enhanced by these bacteria.Two cave-enlarging processes were identified. (1) Sulphuric acid derived from oxidation of the hydrogen sulphide converts subaerial limestone surfaces to gypsum. The gypsum falls into the cave stream and is dissolved. (2) Strongly acidic droplets form on the gypsum and on microbial filaments, dissolving limestone where they drip onto the cave floors.The source of the H2S in the spring waters has not been positively identified. The Villahermosa petroleum basin within 50 km to the northwest, or the El Chichon volcano [small tilde]50 km to the west, may serve as source areas for the rising water. Depletion of 34S values (-11.7[per mille sign] for sulphur stabilized from H2S in the cave atmosphere), along with the hydrochemistry of the spring waters, favour a basinal source

Hydrogeologic control of cave patterns, 2000, Palmer A. N.
Cave patterns are controlled by a hierarchy of hydrogeologic factors. The location and overall trend of a cave depends on the distribution of recharge and discharge points within the karst aquifer. Specific cave patterns, i.e. branchwork vs. maze patterns, are controlled mainly by the nature of the groundwater recharge. Individual passage configurations are determined by the structural nature of the bedrock and by the geomorphic evolution of the aquifer. The origin of branchwork caves is favored by point recharge sources of limited catchment area. Floodwater recharge, especially through sinking streams, tends to produce maze caves or local mazes superimposed on branchwork caves. Through floodwater activity, anastomotic mazes form in prominently bedded aquifers, network mazes in prominently fractured aquifers, and spongework mazes in highly porous or brecciated rocks. Epikarst, network caves, and spongework caves are also produced by diffuse or dispersed infiltration into the karst aquifer, and network and spongework caves can be the product of mixing of two waters of contrasting chemistry. Ramiform caves are produced most often by rising water rich in hydrogen sulfide, which oxidizes to sulfuric acid. Deep-seated processes that help to initiate cave development include the interaction between carbonates and sulfates, which can greatly increase the solubility of dolomite, gypsum, and anhydrite, while calcite precipitates. Although tightly confined artesian conditions have long been associated with the origin of maze caves, they actually have no inherent tendency to form mazes. The slow movement of groundwater close to equilibrium with dissolved bedrock, typical of tightly confined artesian aquifers, is the least favorable setting for maze development.

Conduit fragmentation, cave patterns, and the localization of karst ground water basins: the Appalachians as a test case., 2001, White W. B. , White E. L.
Because conduit systems in maturely developed karst aquifers have a low hydraulic resistance, aquifers drain easily and karst aquifers are subdivided into well-defined ground water basins. Ground water elevations arc highest at basin boundaries; lowest at the spring where the ground water is discharged. Parameters that control the type of conduit development are (1) the effective hydraulic gradient, (2) the focus of the drainage basin, and (3) the karstifiability of the bedrock. Moderate to highly effective hydraulic gradients permit the runaway process that leads to single conduit caves and well ordered branchwork systems. Low hydraulic gradients allow many alternate flow paths and thus a large degree of fuzziness in the basin boundaries. Low gradient ground water basins also tend to merge due to rising water tables during periods of high discharge. Focus is provided by geological constraints that optimize discharge at specific locations that can evolve into karst springs. Karstifiability is a measure of the bulk rate at which aquifer rocks will dissolve. Fine grained, pure limestones and shaley dolomites mark the opposite ends of the range. The cave surveys of the Appalachian Highlands provide a data base that can be used to classify the lateral arrangements of conduit systems and thus determine the relative importance of the factors defined above.

Karst geoindicators of environmental change: The case of Lithuania, 2002, Taminskas J. , Marcinkevicius V. ,
Karst is the result of an epigenetic geomorphologic process that may involve rapid changes to landscapes and their physical properties, with the newly formed relief complicating regional economic development and the protection of nature. The intensity of the karst process is closely linked with the circulation of surface and groundwater, so that the parameters characterising water circulation and chemical denudation can serve as indicators of the intensity of karstification. In this article, we describe the North Lithuanian karst region, and evaluate the influence of climate and hydrological conditions on karstification. Upper Devonian gypsum and dolomites occur beneath the Quaternary sediments here. Sinkholes frequently appear where the latter are particularly thin and underlain by gypsum, suggesting that karstification is intensifying. This is perhaps related to climate change expressed by an increase in mean annual temperature and runoff, especially during warm winters. To identify the main determinants of the karst processes, monitoring was carried out between 1994 and 1999, and data on river runoff and water chemistry from 1962 to 1999 were examined. From 1978 to 1999, the mean chemical denudation rate in the active gypsum karst zone was 30% higher than from 1962 to 1977, a change mirrored by the increased total volume of new sinkholes that appeared in the 1980s and 1990s. We have calculated the rate of chemical denudation and sink-hole formation in the last four decades and discuss karst activitiy as a geoindicator of environmental change

Conduit fragmentation, cave patterns, and the localization of karst ground water basins: the Appalachians as a test case, 2003, White W. B. , White E. L.

Because conduit systems in maturely developed karst aquifers have a low hydraulic resistance, aquifers drain easily and karst aquifers are subdivided into well-defined ground water basins. Ground water elevations are highest at basin boundaries; lowest at the spring where the ground water is discharged. Parameters that control the type of conduit development are (1) the effective hydraulic gradient, (2) the focus of the drainage basin, and (3) the karstifiability of the bedrock. Moderate to highly effective hydraulic gradients permit the runaway process that leads to single conduit caves and well ordered branchwork systems. Low hydraulic gradients allow many alternate flow paths and thus a large degree of fuzziness in the basin boundaries. Low gradient ground water basins also tend to merge due to rising water tables during periods of high discharge. Focus is provided by geological constraints that optimize discharge at specific locations that can evolve into karst springs. Karstifiability is a measure of the bulk rate at which aquifer rocks will dissolve. Fine grained, pure limestones and shaley dolomites mark the opposite ends of the range. The cave surveys of the Appalachian Highlands provide a data base that can be used to classify the lateral arrangements of conduit systems and thus determine the relative importance of the factors defined above.


Morphometry and distribution of isolated caves as a guide for phreatic and confined paleohydrological conditions, 2005, Frumkin A, Fischhendler I,

Isolated caves are a special cave type common in most karst terrains, formed by prolonged slow water flow where aggressivity is locally boosted. The morphometry and distribution of isolated caves are used here to reconstruct the pateohydrology of a karstic mountain range. Within a homogenous karstic rock sequence, two main types of isolated caves are distinguished, and each is associated with a special hydrogeologic setting: maze caves form by rising water in the confined zone of the aquifer, under the Mt. Scopus Group (Israel) confinement, while chamber caves are formed in phreatic conditions, apparently by lateral flow mixing with a vadose input from above. (c) 2004 Elsevier B.V. All rights reserved


Cross-formational rising groundwater at an artesian karstic basin: the Ayalon Saline Anomaly, Israel, 2006, Frumkin A, Gvirtzman H,
It is proposed that a geothermal artesian karstic system at the central part of the Yarkon-Taninim aquifer creates the 'Ayalon Saline Anomaly' (ASA), whose mechanism has been under debate for several decades. A 4-year-long detailed groundwater monitoring was carried out at 68 new shallow boreholes in the Ayalon region, accompanied by a comprehensive survey of karstic voids. Results indicate the rising of warm-brackish groundwater through highly permeable swarms of karstic shafts, serving as an outflow of the artesian geothermal system. The ASA area contains 'hot spots', where groundwater contrasts with,normal' water hundreds of meters away. The ASA temperature reaches 30 degrees C ( similar to 5 degrees C warmer than its surroundings), chloride concentration reaches 528 mg/l (50-100 mg/l in the surrounding), H2S concentration reaches 5.6 mg/l (zero all around) and pH value is 7.0 (compared with 7.8 around). Subsequently, the hydrothermal water flows laterally of at the watertable horizon through horizontal conduits, mixing with 'normal' fresh water which had circulated at shallow depth. Following rainy seasons, maximal watertable rise is observed in the ASA compared to its surroundings. Regional hydrogeology considerations suggest that the replenishment area for the ASA water is at the Samaria Mountains, east of the ASA. The water circulates to a great depth while flowing westward, and a cross-formational upward flow is then favored close the upper sub-aquifer's confinement border. (c) 2005 Elsevier Ltd All rights reserved

Cathedral Cave, Wellington Cave, New South Wales, Australia. A multiphase, non-fluvial cave., 2007, Osborne R. A. L.
Cathedral Cave is an outstanding example of a class of multiphase caves with largely non-fluvial origins. It contains large cavities such as cathedrals and cupolas, characteristic of excavation by convection currents in rising waters. Smaller-scale features such as rising half-tubes, pseudonotches, curved juts, projecting corners, blades and bridges indicate intersection and exhumation of older cavities during the formation of younger ones. It is possible to recognize at least ten significant phases of speleogenesis by morphostratigraphy, in addition to the four generations of cave-filling palaeokarst deposits intersected by the cave. The cave we see today results from the progressive integration of a number of previously disconnected or poorly connected solution cavities.

ACTIVE HYPOGENE SPELEOGENESIS AND THE GROUNDWATER SYSTEMSAROUND THE EDGES OF ANTICLINAL RIDGES, 2009, Frumkin A.

It has been recently acknowledged that hypogenic caves are common in limestone terranes (e.g. KLIMCHOUK, 2000; AUDRA et al., 2002, 2007; AULER AND SMART, 2003; FORD AND WILLIAMS, 2007), with an extensive review by KLIMCHOUK (2007). Anticlinal ridges provide large recharge areas through which meteoric water may flow into confined zones around the peripheries during their history of uplift and associated denudation. The spatially varying stratal dips may create preferred flow routes within the confined zone and consequently promote hypogene speleogenesis at the most suitable sites for the water to rise again and discharge. Active speleogenetic sites thus may be found around the edges of anticlinal ridges where the potentiometric levels in the con?ned zone are high enough to promote the rising, transverse ?ow. Further away towards the adjoining synclinal basin, impermeable cover may be too thick to allow rising flow. The preferred sites for speleogenesis may migrate away from the anticlinal axis during the uplift process and associated lowering of groundwater levels. The common occurence of relict isolated hypogene caves in the Judean anticlinorium (FRUMKIN AND FISCHHENDLER, 2005) have led to the discovery of similar caves actively forming today. The Yarkon-Taninim regional aquifer is divided into lower and upper sub-aquifers, of which the lower one becomes (partly) con?ned near the anticlinal axis, while the upper sub- aquifer becomes con?ned at the western foothills. Upward flow is evident at the Ayalon Salinity Anomaly (ASA) where the upper sub-aquifer is still uncon?ned, so that rising water has much larger free space to ?ll in comparison with the nearby confined zone (FRUMKIN AND GVIRTZMAN, 2006). Approaching the watertable, the emerging rising flow can easily travel laterally along the highly permeable karstified zone. The rising ASA water is comparable to artesian springs, which discharge in the zone of lowest head of the upper aquifer. In the case of the ASA, however, the upward ?ow does not reach the open land surface but instead disperses laterally near the watertable. It may thus be considered an “underground delta”. The conceptual model consists of four-segment flow route: (1) rainwater recharge through outcrops on the anticlinal ridge; (2) lateral confined flow down to a depth of ~-700 m; (3) pressurized upward flow through discrete sub-vertical conduits; and (4) multidirectional pervasive flow close to the water table, with restricted output in which the rising water mingles with the ‘normal’ water of the upper aquifer. Maze caves fed by vertical conduits are typical for such an “underground delta”, as they disperse the flow laterally in many similar routes. Dense cave formation is observed to be associated with the upward flow of aggressive water. Within the “underground delta” the aggressiveness is consumed over short distances laterally away from the sub-vertical feeders. Such formation of large voids by dissolution far from the recharge zone implies renewed hydrochemical aggressiveness. The spatial location of the ASA is determined by three conditions that allow upward leakage from the deep sub-aquifer: (1) the location of the westernmost unconfined zone of the upper sub-aquifer, and its association with nearby confined regions; (2) the large upward head gradient; (3) spatial heterogeneities in the vertical permeability that are associated with tectonically disturbed zones.


Acqua Fitusa Cave: an example of inactive water-table sulphuric acid cave in Central Sicily, 2012, Vattano M. , Audra Ph. , Bigot J. Y. , Waele J. D. , Madonia G. , Nobcourt J. C.

Hypogenic caves are generated by water recharging from below independently of seepage from the overlying or immediately adjacent surface. These waters are often thermal and enriched in dissolved gases, the most common of which are CO2 and H2S. Hypogenic caves can be thermal caves, sulphuric acid caves, basal injection caves. They differ from epigenic caves in many ways, such as: speleogenetic mechanisms, morphological features, chemical deposits, and lack of alluvial sediments (KLIMCHOUK, 2007; KLIMCHOUK & FORD, 2009; PALMER, 2011). Several studies were conducted to evaluate the hypogenic origin of a large number of caves (AUDRA et alii, 2010; KLIMCHOUK & FORD, 2009; STAFFORD et alii, 2009). A significant contribution was given by the work of Klimchouk (2007) that systematically provided instruments and models to better understand and well define the hypogenic karst processes and landforms. Detailed studies on hypogenic caves were carried out in Italy since the 90s in different karst systems, especially in the Central and Southern Appenines. These studies mainly concerned chemical deposits related to ascending water and micro-biological action (GALDENZI & MENICHETTI, 1995; GALDENZI, 1997; PICCINI, 2000; GALDENZI & MARUOKA, 2003, FORTI & MOCCHIUTTI, 2004; GALDENZI, 2012). In this paper, we present the first results of researches conducted in Acqua Fitusa cave that was believed to be an epigenic cave until today. Acqua Fitusa cave is located in Central Sicily, along the north-eastern scarp of a N-S anticline, westward vergent, forming the Mt. La Montagnola. The cave formed in the Upper Cretaceous Rudist breccias member of the Crisanti Fm., composed of conglomerates and reworked calcarenites with rudist fragments and benthic foraminifers ( CATALANO et alii, 2011). The cave consists at least of three stories of subhorizontal conduits, displaying a total length of 700 m, and a vertical range of 25 m. It represents a clear example of inactive water-table sulphuric acid cave, produced mainly by H 2S degassing in the cave atmosphere. Despite the small size, Acqua Fitusa cave is very interesting for the abundance and variety of forms and deposits related to rising waters and air flow. A ~ 7 m deep inactive thermo-sulphuric discharge slot intersects the floor of some passages for several meters (Fig. 1). Different morphologies of small and large sizes, generated by condensation-corrosion processes, can be observed along the ceiling and walls: ceiling cupolas and large wall convection niches occur in the largest rooms of the cave; deep wall convection niches, in places forming notches, incise cave walls at different heights; condensation-corrosion channels similar to ceiling-half tubes carve the roof of some passages; replacements pockets due to corrosion-substitution processes are widespread; boxwork due to differential condensation-corrosion were observed in the upper parts of the conduits. Sulphuric notches with flat roof, linked to lateral corrosion of the thermal water table, carve the cave walls at different heights recording past stages of base-level lowering. 


Sagging and collapse sinkholes over hypogenic hydrothermal karst in а carbonate terrain, 2014, Frumkin A. , Zaidner Y. , Na'aman I. , Tsatskin A. , Porat N. , Vulfson L.

We show that clusters of karst sinkholes can occur on carbonate hypogene karst terrains. Unlike common doline karst of dissolution origin, the studied sinkholes form mainly by sagging and collapse. Thermal survey, OSL dating and morphologic analysis during quarrying and excavations are applied to study the sinkholes at the Ayyalon karst, Israel. The thermal survey shows the spatial pattern of rising warm water plumes, whose temperature is > 2 °C warmer than the surrounding aquifer water. These plumes dissolve the limestone, creating large voids and maze caves. Mass wasting forms surface sinkholes mainly by sagging and collapse. Both types of deformation often occur within the same depression. Lack of hydrologic connection between the surface and underground voids constrain drainage and promote rapid accumulation of colluvium, dust and pedogenic clays. These have filled the sinkholes up to their rim before the late Holocene. OSL dating constrains the rate of sediment accumulation within the sinkholes. The average filling rate (thickness divided by elapsed time) is ~ 47 mm ka− 1 for the last 53 ± 4 ka in Sinkhole 1, while in Sinkhole 2 (“Nesher Ramla karst depression”), the rate is ~ 61 mm ka− 1 from ~ 200 to 78 ka, and ~ 173 mm ka− 1 since ~ 78 ka. Between ~ 170 and 78 ka, Sinkhole 2 was intensively used by Middle Paleolithic hominins. The studied sinkholes may be considered as a type locality for hypogene sinkhole terrain on carbonate rocks.


Results 1 to 12 of 12
You probably didn't submit anything to search for