Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That omnivore is an animal that habitually eats both plants and animals [23]. see also carnivore; herbivore; insectivore.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for river waters (Keyword) returned 7 results for the whole karstbase:
Dissolution of Gypsum from field observations., 1996, Aksem Sergey, Calaforra Jos Maria, Cucchi Franco, Finocchiaro Furio, Forti Paolo, Klimchouk Alexander
The paper reports the results of field measurements of gypsum dissolution in various countries (Ukraine, Spain, Italy and others) and in different environments (river waters, precipitation, vadose zone, unconfined aquifer, perched cave lakes, ephemeral streams in caves, confined aquifer, cave air).

Geochemistry and water dynamics: Application to short time-scale flood phenomena in a small Mediterranean catchment .1. Alkalis, alkali-earths and Sr isotopes, 1997, Benothman D, Luck Jm, Tournoud Mg,
We report major, trace elements and Sr isotope data for water samples taken regularly during a four-day-long September flood of a Mediterranean river, the Vene (Herault, S. France). The objective is to combine all these data into a dynamic model that describes the origin(s) and movements of waters and their loads. This river drains the runoff from a small, mainly carbonate, partly karstified watershed with Miocene and Jurassic lithologies. The watershed is also impacted by both agricultural and urban activities. Both the dissolved and the particulate loads were analyzed. Concentrations of the dissolved components show major remobilization of almost all elements during the first few hours of the flood (water treatment plants and aerosol scavenging), followed by a sharp concentration decrease. Some major species return to their previous summer values (Ca, HCO3) while others reach low 'background' levels (Na, K, Cl, SO4). Some trace elements (Rb, Sr, Cs) show similar behaviour but (Ba) appears somewhat unaffected. Trace element concentrations and ratios define two main periods (three in the suspended particulate matter). Ratios do not allow distinguishing between the three main sources for the dissolved load in the first period (Miocene, Jurassic, water treatment plants), but clearly show the Jurassic karst influence later on. The Sr-87/Sr-86 Of the suspended particulate matter is more variable and more radiogenic than in the dissolved phase. Variations in concentration ratios and Sr isotope composition in particulates indicate the large and variable contribution of Miocene silicates with some carbonate. However, there is a need for another component with [Rb]/[Sr] higher than bedrocks, internal or external to the watershed, possibly due to differential erosion. Dissolved Ca and Mg fluxes during the flood were calculated at 0.26 ton and 0.029 ton/km(2), respectively. Even though the carbonate nature of the watershed restricts variability in Sr isotope composition in the dissolved load, we distinguish several endmembers: seawater(approximate to marine rain), Miocene marls, Jurassic limestones, water treatment plants (and possibly another attributable to fertilizers). Combined with major and trace element variational Sr isotope fluctuations indicate time-varying proportions of different water endmembers at the outflow and suggest a general dynamic model. Based on PCA (principal component analysis), a 3D representation allows to visualize the geochemical evolution of the Vene waters. In particular, Sr isotopes clearly indicate that the inflow of karstic waters during the flood was not continuous but occurred as a series of marked oscillations between flowing waters with chemical signature of Miocene lithologies and increasing flushes of deeper waters that interacted with Jurassic lithologies. (C) 1997 Elsevier Science B.V

Oxidation of organic matter in a karstic hydrologic unit supplied through stream sinks (Loiret, France), 1998, Alberic P, Lepiller M,
The aim of this paper is to appraise the ability of the oxidation of riverine organic matter in the control of limestone dissolution, in a karst network. Biogeochemical processes during infiltration of river water into an alluvial aquifer have already been described for an average flow velocity of 4-5 m d(-1) (Jacobs, L. A., von Gunten, H. R., Keil, R, and Kuslys, M. (1988) Geochemical changes along a river-groundwater infiltration flow path: Glattfelden, Switzerland. Geochim. Cosmochim. Acta 52, 2693-2706; Von Gunten, H. R., Karametaxas, G., Krahenbuhl, U., Kuslys, M., Giovanoli R., Hoehn E. and Keil R. (1991) Seasonal biogeochemical cycles in riverborne groundwater. Geochim. Cosmochim. Acta 55, 3597-3609; Bourg, A. C. M. and Bertin, C. (1993) Quantitative appraisal of biogeochemical chemical processes during the infiltration of river water into an alluvial aquifer. Environ. Sci. Technol. 27, 661-666). Karstic drainage networks, such as in the River Loire-Val d'Orleans hydrologic system (Fig. 1), make possible flow velocities up to 200 m h(-1 a) and provide convenient access to different water samples several tens of km apart, at both extremities of the hydrologic unit (Chery, J.-L. (1983) Etude hydrochimique d'un aquifere karstique alimente par perte de cours d'eau (la Loire): Le systeme des calcaires de Beauce sous le val d'Orleans. These, Universite d'Orleans; Livrozet, E. (1984) Influence des apports de la Loire sur la qualite bacteriologique et chimique de l'aquifere karstique du val d'Orleans. These, Universite d'Orleans). Recharge of the karstic aquifer occurs principally from influent waters from stream sinks, either through coarse alluvial deposits or directly from outcrops of the regional limestone bedrock (Calcaires de Beauce). Recharge by seepage waters From the local catchment basin is small (Zunino, C., Bonnet, M. and Lelong, F. (1980) Le Val d'Orleans: un exemple d'aquifere a alimentation laterale. C. R. somm. Soc. Geol. Fr. 5, 195-199; Gonzalez R. (1992) Etude de l'organisation et evaluation des echanges entre la Loire moyenne et l'aquifere des calcaires de Beauce. These, Universite d'Orleans) and negligible in summer. This karstic hydrologic: system is the largest in France in terms of flow (tens to hundreds of m(3)/s) and provides the main water resource of the city of Orleans. Chemical compositions of influent waters (River Loire) and effluent waters (spring of the river Loiret) were compared, in particular during floods in summer 1992 and 1993 (Figs 2-4). Variation of chloride in the River Loire during the stream rise can be used as an environmental tracer of the underground flow (Fig. 2). Short transit times of about 3 days are detectable (Fig, 2) which are consistent with earlier estimations obtained with chemical tracers (Ref. in Chery, J.-L. (1983) These, Universite d'Orleans). Depending on the hydrological regime of the river, organic carbon discharge ranges between 3-7 and 2-13 mg/l for dissolved and particulate matter respectively (Fig. 3). Eutrophic characteristics and high algal biomasses are found in the River Loire during low water (Lair, N. and Sargos, D. (1993) A 10 year study at four sites of the middle course of the River Loire. I - Patterns of change in hydrological, physical and chemical variables in relation to algal biomass. Hudroecol. Appl. 5, 1-27) together with more organic carbon rich suspended particulate matter than during floods (30-40 C-org % dry weight versus 5-10%). Amounts of total organic carbon and dissolved oxygen (Fig. 3) dramatically decrease during the underground transport, whereas conversely, dissolved calcium, alkalinity and inorganic carbon increase (Fig. 4). Anoxia of outflows map start in April. Dissolution of calcium carbonates along the influent path outweighs closed system calcite equilibrium of inflow river waters (Table 3). The impact of organic matter oxidation on calcite dissolution may be traced by variations of alkalinity and total carbonates in water. Following, Jacobs, L. A., von Gunten, H. R., Keil, R. and Kuslys, M. (1988) Geochemical changes along a river-groundwater infiltration flow path: Glattfelden, Switzerland. Geochim. Cosmochim. Acta 52, 2693-2706), results are shown graphically (Fig. 5). Extent of reactions is controlled by the consumption of dissolved O-2 and nitrate for organic matter oxidation and by the release of Ca2 for calcite dissolution (Table 2). The karstic network is considered to behave like a biological reactor not exchanging with the atmosphere, with steady inhabitant microbial communities (Mariotti A., Landreau A, and Simon B. (1988) N-15 isotope biogeochemisrry and natural denitrification process in groundwater: Application to the chalk aquifer of northern France. Geochim. Cosmochim. Acta 52, 1869-1878; Gounot, A.-M. (1991) Ecologie microbienne des eaux ei des sediments souterrains. Hydrogeologie, 239-248). Thus, energy requirements only are considered, not carbon assimilation. Moreover, there is no necessity to invoke any delay for nitrification enhancement, as observed elsewhere, after waste water discharge into the river (Chesterikoff, A., Garban, B., Billen, G. and Poulin, M. (1992) Inorganic nitrogen dynamics in the River Seine downstream from Paris (France). Biogeochem. 17, 147-164). Main microbial processes are assumed to be aerobic respiration, nitrification and denitrification. Reactions with iron and manganese, real but not quantitatively important, were neglected. Sulphate reduction and methane formation, certainly not active, were not considered. Denitrification, which is suggested by low nitrate and ammonium concentrations and anoxia in the outflow, is known to be rapid enough to be achieved in a short time (Dupain, S. (1992) Denitrification biologique heterotrophe appliquee au traitement des eaux d'alimentation: Conditions de fonclionnement et mise au point d'un procede. These, Universite Claude Bernard, Lyon). Reaction are somewhat arbitrary but conform to general acceptance (Morel, M. M. and Hering, J. G. (1993) Principles and Applications of Aquatic Chemistry. Wiley, New York). Anaerobic ammonium oxidation (Mulder A., van de Graaf, A. A., Robertson, L: A. and Kuenen, J. G. (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol. Ecol. 16, 177-184). although possible, was not considered. In fact, C/N ratio of the reactive organic matter has only mild repercussions on the results; i.e. in the same range as the analytical errors for alkalinity and total carbonates. The objective was simply to roughly confront characteristics of outflowing waters and the calculation. Respective roles of aerobes and denitrifiers, for instance, are not certain. Several periods during low water or floods were selected with various ranges for calcium dissolution or nitrate and oxygen concentrations. The result is that in most cases simulation and data are in reasonable accordance (Fig. 5). Amounts of organic matter in River Loire are generally sufficient to sustain the process (Table 3. Particulate organic matter is probably the most reactive. The balance of oxidation of organic matter indicates that about 65 mu g C-org/l.h are oxidized during the transport without much variation with the river regime or organic discharge. It is concluded that limestone dissolution is directly dependent on organic matter oxidation, but variation occurs (7-29 mg CuCO3/l) with the level of bases that can be neutralized in the River Loire water. (C) 1998 Elsevier Science Ltd. All rights reserved

Isotopic compositions of strontium in river water of Guizhou karst areas, China, 2001, Han G. L. , Liu C. Q. ,
We have carried out a study on the variation of strontium isotope composition of river waters, Wujiang and Yuangjiang River, in karst areas of Guizhou Province, China. The results obtained permit us to characterize the geochemistry of the river draining karst terrain and obtain a better understanding of main controls of catchment geology, chemical weathering of different rocks, and evaluate impact of human activities on the environment. The isotopic ratios of dissolved Sr in all rivers are between Sr-87/Sr-86 = 0.7077 and 0.7110, totally lower than the weighted average of Sr-87/Sr-86 = 0.7119 for the world large rivers. The Wujiang River waters have Sr concentrations from 1.0 to 6.1 mu mol/L, while the Yuanjiang River waters have much lower Sr concentrations ranging from 0.28 to 1.3 mu mol/L. Most of the river waters from the Wujiang river are characterized by low Ca/Sr and Mg/Sr, and Sr-87/Sr-86 ratios, in which a majority of river waters are of Sr-87/Sr-86 ratios lower than the average Sr isotope ratio (Sr-87/Sr-86 = 0.709) of present seawater. The higher Sr-87/Sr-86 ratios are observed in the river waters in the lower reach of the Wujiang River, where the lithology is dominated by detrital rocks and dolomite. The water from Yuanjiang River show higher Ca/Sr, Mg/Sr and Sr-87/Sr-86 ratios due to weathering of silicates, as compared to the river waters from Wujiang river

Natural and EDTA-complexed lanthanides used as a geochemical probe for aquifers: a case study of Orleans valley's alluvial and karstic aquifers, 2005, Borgne Fl, Treuil M, Joron Jl, Lepiller M,
The transit of chemical elements within the different parts of Orleans valley's aquifer is studied by two complementary methods. Those methods rely on the fractionation of lanthanides (Ln) during their migration in natural waters. The first method consists in studying natural lanthanides patterns within the watershed, at its entries and exits. The second one lies on multi-tracer experiments with Ln-EDTA complexes. This work is completed through an observation network consisting of 52 piezometers set on a sand and gravel quarry, and the natural entries and exits of the aquifer. Orleans valley's aquifer, which is made of an alluvial watershed lying on a karstic aquifer, is mainly fed by the Loire river via a large karstic network. At the entries of the aquifer (Loire river at Jargeau), the Ln concentrations in the dissolved fraction (< 0,22 {micro}m) vary with the flow of the river. During floods, Loire river waters display bulk continental crust-like Ln compositions with a slight enrichment in heavy Ln from Dy to Lu. When the Loire river flow becomes low level, the crust-normalised Ln patterns show a depletion in light Ln whereas Lu concentrations remain identical. The same evolution spatially occurs between the entries and exits of the karstic network. Spring waters are depleted in light Ln relative to the Loire river whereas heavy Ln (Yb, Lu) remain constant during transit. Furthermore, the depletion in light Ln increases with the distance between entries and exits. Tracer experiments using EDTA-complexed Ln within and between the alluvial and calcareous parts of the watershed have shown that complexed Ln are fractionated across all these geological strata. The recoveries of tracers always follow the order light Ln < heavy Ln. Moreover, both sediments analyses and filtering experiments at a porosity of 0,02 {micro}m show that, in the presence of EDTA, Ln adsorb onto sediments and colloids in the order light Ln > heavy Ln. On the other hand, the filtration of alluvial groundwater with high colloids content induces no significant Ln fractionation when the solution contains no strong chelating agent. Hence, the transit of natural and artificial Ln in Orleans valley aquifer can be explained by two complementary processes. (1) Decanting/filtering or, on the opposite, stirring of colloids. Those processes induce no important Ln fractionation. (2) Exchanges of Ln between solute complexes, colloids and sediments due to the presence of strong chelating agents. Those exchanges fractionate the Ln in the order of their stability constants. Considering the natural Ln fractionation that occurs in the Loire river and in the studied aquifer, the carbonates, the stability constants of which follow the order light Ln < heavy Ln, are the best candidates as natural strong chelating agents. From the hydrodynamic point of view, both tracer experiments and natural Ln concentrations show that the transfer of elements within the alluvial watershed is pulsed by the Loire river movements. During an ascent phase, the elements migrate away from and perpendicularly to the karstic channels direction. During the river descent, horizontal flows are quasi absent and migrations are mainly vertical from the alluvia down to the calcareous part of the aquifer. Due to those hydrodynamic characteristics, alluvia and non fissured limestone have a high dynamic confining capacity. Elements with high affinity for solid or colloidal phases (e.g. light Ln) have an increased confining capacity in the whole aquifer, by sorption and colloid filtration within the alluvia and at the alluvial-calcareous interface, and by colloid decanting within the karstic channels. Overall, this model combines two components. The first one, hydrodynamical, results from the repartition of the loads pulsed by river Loire through the karst. The second one physico-chemical, results from the element distribution mainly controlled by colloide/solute complexes exchange coefficients

Incorporation of Auxiliary Information in the Geostatistical Simulation of Soil Nitrate Nitrogen, 2006, Grunwald S. , Goovaerts P. , Bliss C. M. , Comerford N. B. , Lamsal S. ,
In north-central Florida the potential risk for movement of nitrate into the aquifer is high due to the large extent of well-drained marine-derived quartz sand overlying porous limestone material coupled with high precipitation rates. Our objective was to estimate spatio-seasonal distributions of soil NO3-N across the Santa Fe River Watershed in north-central Florida. We conducted spatially distributed synoptic and seasonal sampling (September 2003--wet summer/fall season, January 2004--dry winter season, May 2004--dry spring season) of soil NO3-N. Prior distributions of probability for NO3-N were inferred at each location across the watershed using ordered logistic regression. Explanatory variables included environmental spatial datasets such as land use, drainage class, and the Floridian aquifer DRASTIC index. These prior probabilities were then updated using indicator kriging, and multiple realizations of the spatial distribution of soil NO3-N were generated by sequential indicator simulation. Cross-validation indicated that smaller prediction errors are obtained when secondary information is incorporated in the analysis and when indicator kriging is used instead of ordinary kriging to analyze these datasets characterized by the presence of extreme high values and a nonnegligible number of data below the detection limit. The NO3-N values were lowest in September 2003 as a result of excessive leaching caused by large, intense tropical storms. Overall the NO3-N values in January 2004 were high and could be attributed to fertilization of crops and pastures, low plant uptake, and low microbial transformation during the winter period. Despite seasonal trends reflected by the values of observed and estimated NO3-N, we found areas that showed consistently high soil NO3-N throughout all seasons. Those areas are prime targets to implement best management practices

A maximum size and abundance record for Cambarus subterraneus (Astacoidea: Cambaridae), 2013, Fenolio Dante, Niemiller Matthew L, Soares Daphne, Slay Michael E, Stark Richard C, Hensley Steve L

The Delaware County Cave Crayfish, Cambarus subterraneus is restricted to just three caves within a small region of the Neosho River watershed of Delaware Co., Oklahoma, USA.  Few individuals are typically observed during surveys of the three caves.  This species is listed as ‘Critically Imperiled’ by NatureServe and ‘Critically Endangered’ by IUCN.  We observed an exceptionally large female in Twin Cave, Delaware Co., OK; we also recorded a record count in the system.  Based on our observations at Twin Cave, we think this population is healthy with continued recruitment and with some individuals attaining large sizes and presumably old ages.

Results 1 to 7 of 7
You probably didn't submit anything to search for