Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_right.php on line 7
KarstBase a bibliography database in karst and cave science.
Featured articles from Cave & Karst Science Journals
Characterization of minothems at Libiola (NW Italy): morphological, mineralogical, and geochemical study, Carbone Cristina; Dinelli Enrico; De Waele Jo
Chemistry and Karst, White, William B.
The karst paradigm: changes, trends and perspectives, Klimchouk, Alexander
Long-term erosion rate measurements in gypsum caves of Sorbas (SE Spain) by the Micro-Erosion Meter method, Sanna, Laura; De Waele, Jo; Calaforra, José Maria; Forti, Paolo
The use of damaged speleothems and in situ fault displacement monitoring to characterise active tectonic structures: an example from Zapadni Cave, Czech Republic , Briestensky, Milos; Stemberk, Josef; Rowberry, Matt D.;
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
Search in KarstBase
Your search for silica. (Keyword) returned 4 results for the whole karstbase:
MORPHOGENESIS OF CAVES AND LANDFORMS IN THE PRECAMBRIAN QUARTZITE OF RORAIMA GROUP (VENEZUELA) - This paper describes caves and landforms developed in the Precambrian quartzite of the Roraima Group (1600-1800 My) in the Gran Sabana of Venezuela (cf. Pouyllau and Seurin, in Karstologia, 1985, n° 5). High plateaus (Tepuys) are remnants of old erosional surfaces of Secondary-Tertiary age. The weathering of quartzite is produced in fissures by means of the dissolution of the intergranular siliceous cement. Depressions, fields of blocks and small towers, deep fissures characterise the edges of tepuys. Underground passages could be formed by dissolution, arenisation and piping from the fractures which dissect the tepuys. The part of hydrothermalism in speleogenesis is not proved.
The Ratatotok district in the Minahasa Regency of North Sulawesi, Indonesia is an area of significant gold mineralisation. Gold has been mined in the district since at least the 1850s, and intensively by the Dutch between 1900 and 1921 with a recorded production of 5,060 kg of gold. Newmont began exploring the district in 1986, and has delineated a major sediment-hosted replacement-style deposit at Mesel, and other smaller deposits in an 8 X 5 km area. A total drill-indicated resource of over 60 metric tonnes of gold ( 2 Moz) is reported for Mesel, and three of the smaller deposits. Approximately 80% of this resource is refractory. Silver grades are usually low (< 10 g/t). The Mesel deposit is similar to many Carlin-type deposits in carbonate hostrocks, alteration, geochemical signature and ore mineralogy, but is distinct in tectonic setting. The discovery of replacement-style mineralisation at Mesel, in an impure limestone within a Tertiary island arc environment, demonstrates that deposits with outward characteristics similar to Carlin-type mineralisation are not restricted to a continental setting. Carbonate sediments in the Ratatotok district were deposited in a Late Miocene restricted basin. Later compressional tectonics caused uplift that resulted in karst development in the limestone and erosion of the adjacent volcanic arc with deposition of a thick epiclastic unit. This was followed by intrusion of shallow level pre-mineral andesite into the sequence. Mineralisation at Mesel, and probably elsewhere in the district, is synchronous with the late-stage reactivation of strike-slip faults. Mineralising fluids at Mesel were focussed along steep structures sympathetic to these faults, and trapped below a relatively impermeable andesite cap rock. Hydrothermal fluids caused decalcification of the silty, more permeable carbonate units with the formation of secondary dolomite, deposition of fine arsenian pyrite, silica veinlets and gold. Volume loss due to decalcification and dolomite formation caused collapse brecciation which enhanced fluid flow and further mineralisation. This locally culminated in total decarbonation and deposition of massive silica. Late-stage stibnite occurs in structural zones within the ore deposit, whereas arsenic (as realgar and orpiment) and mercury (as cinnabar) are concentrated on the periphery. Elsewhere in the Ratatotok district, gold mineralisation is restricted to replacement-style mineralisation in permeable zones along limestone-andesite contacts, open-space-filling quartz-calcite veins and stockworks, and residual quartz-clay breccias. The residual breccias are developed in-situ, and are interpreted to form by dissolution of the wallrock limestone from around pre-existing mineralisation. This has resulted in widespread eluvial gold occurrences
The Tertiary piedmont deposits (Hamada Formations), on the southern edge of the Haut-Atlas mountains, form extensive tablelands in the Boudenib area. They consist of two main sedimentary sequences, the Hamada de Boudenib and the Hamada du Guir, of Eocene and Miocene age. Both sequences show elastic facies at their base (conglomerates, calcareous sandstones, silty clays) and end with thick lacustrine limestones and pedogenic calcretes are characterised by rather confined facies, palygorskite-rich, with some gypsum in the second sequence. The recent evolution of the region is marked by the dissection of the tableland that is lined with high cliffs. The water flaw is mainly through wide karst features as there is no major river on the tableland. Silicifications which affect the different facies, form pods of various shape and size, and show an erratic spatial distribution. In the calcareous sandstones, there are irregularly shaped tubules of about 5 cm in diameter, more planar bodies from 5 to 50 cm thick, which frequently display voids lined with translucent silica concretions. The conglomerates display relatively few silicifications, the more characteristic ones consist of a silica cortex on some Limestone pebble and silica plates fitting closely the base of the pebbles. The lacustrine limestones and the calcretes from the upper part of the formation show frequently well developed silicifications. These show very variable shapes; horizontally stretching layers, interconnected or isolated amoeba-like bodies, thin slabs, karst micro-breccia, with frequent concretionnary structures, and quartz crystallisations. Limestone nodules remain often included in these silicifications. The more argillaceous facies display either small tubules or thin plates formed of translucent concretionnary silica. As a rule, the importance of the voids and related structures (concretions, drusy crystals) has to be noticed in all these silicifications, sometimes they are also linked with fractures or karst pipes. Petrography of the silica minerals, their relation with the primary structures. their distribution and their succession, give invaluable information on the silicification processes. Microcrystalline and fibrous quartz are the most common silica minerals, including minor amounts of opal and euhedral quartz. But micrographic arrangements show clearly that primary opal deposits have been more extensive and have recrystallized into chalcedony, microcrystalline quartz, or even ''flame-like'' quartz. Silica deposits in voids make up an important part of the silica pods. The tubules and thin plates of translucent silica of the argillaceous facies are formed of laminar chalcedony deposited around voids. Silica deposits in voids are also particularly obvious in the sandstones. The pores between the quartz grains are then cemented by fibrous quartz and little opal. Some samples show very large cemented voids that cannot be related to the primary porosity of the sandstone. These large voids correspond to the dissolution of the primary calcareous cement, which even led to the collapse of the sandstone fabric. In the limestones, there are silicified micro-karst breccia with a very high primary porosity cemented by quartz crystals, and even in the large microcrystalline quartz zones there are numerous void fillings, the primary porosity often exceeding 50%. There is obviously the alternation of silica deposits and calcite dissolution. Beside the void filling, silicifications comprise also matrix epigenesis, that is replacement of the carbonate by silica with preservation of most of the limestone structures, without development of voids. Nevertheless, the epigenesis of the limestone matrix is restricted to the vicinity of the voids. The silicifications relate to diagenetic processes. The main part of the silica is formed of void deposits and matrix replacement (epigenesis) on the edge of the voids. These void deposits give evidence of the feeding solutions. The regularity of the deposits all around the voids point out to a hydrologic regime characterised by a ground-water our now. Silica originates most probably from alteration of the magnesian clay minerals along the ground-water path. Regarding the low solubility of silica in surficial waters, high flows are needed in order to renew continuously the silica precipitated from solution. This points to a relatively humid climate at time of silicification, and to relief and incised landscapes to bring about these high flows
Types and lateral and vertical distribution of silicification in Riphean (largely dolomitic) rocks of the Yurubcha-Tokhomo zone of the Siberian Craton are discussed. It is shown that quartz and pyroclastic material in sediments were subjected to intense dissolution in a highly alkaline Riphean basin with the release of silica. Rapid and abrupt decrease in alkalinity during hiatus and desiccation periods resulted in the precipitation of dissolved silica and silicification of near-surface sediments. Lateral distribution of silicification was controlled by the redistribution of silica during the pre-Vendian hiatus, when surface waters were filtered through a carbonate massif with the simultaneous karst formation and silica dissolution. In the water discharge area, secondary silica was precipitated owing to changes in pH values and other physicochemical conditions
Results 1 to 4 of 4
You probably didn't submit anything to search for