MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology

Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That observation well is a well drilled for the purpose of observations such as water level or pressure recordings [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for sulfidic caves (Keyword) returned 4 results for the whole karstbase:
Filamentous 'Epsilonproteobacteria' dominate microbial mats from sulfidic cave springs, 2003, Engel As, Lee N, Porter Ml, Stern La, Bennett Pc, Wagner M,
Hydrogen sulfide-rich groundwater discharges from springs into Lower Kane Cave, Wyoming, where microbial mats dominated by filamentous morphotypes are found. The full-cycle rRNA approach, including 16S rRNA gene retrieval and fluorescence in situ hybridization (FISH), was used to identify these filaments. The majority of the obtained 16S rRNA gene clones from the mats were affiliated with the 'Epsilonproteobacteria' and formed two distinct clusters, designated LKC group I and LKC group II, within this class. Group I was closely related to uncultured environmental clones from petroleum-contaminated groundwater, sulfidic springs, and sulfidic caves (97 to 99% sequence similarity), while group II formed a novel clade moderately related to deep-sea hydrothermal vent symbionts (90 to 94% sequence similarity). FISH with newly designed probes for both groups specifically stained filamentous bacteria within the mats. FISH-based quantification of the two filament groups in six different microbial mat samples from Lower Kane Cave showed that LKC group II dominated five of the six mat communities. This study further expands our perceptions of the diversity and geographic distribution of 'Epsilonproteobacteria' in extreme environments and demonstrates their biogeochemical importance in subterranean ecosystems

Productivity-Diversity Relationships from Chemolithoautotrophically Based Sulfidic Karst Systems, 2009, Porter M. L. , Summers Engel A. , Kane T. C. And Kinkle B. K.
Although ecosystems thriving in the absence of photosynthetic processes are no longer considered unique phenomena, we have yet to understand how these ecosystems are energetically sustained via chemosynthesis. Ecosystem energetics were measured in microbial mats from active sulfidic caves (Movile Cave, Romania; Frasassi Caves, Italy; Lower Kane Cave, Wyoming, USA; and Cesspool Cave, Virginia, USA) using radiotracer techniques. We also estimated bacterial diversity using 16S rRNA sequences to relate the productivity measurements to the composition of the microbial communities. All of the microbial communities investigated were dominated by chemolithoautotrophic productivity, with the highest rates from Movile Cave at 281 g C/m2/yr. Heterotrophic productivities were at least one order of magnitude less than autotrophy from all of the caves. We generated 414 new 16S rRNA gene sequences that represented 173 operational taxonomic units (OTUs) with 99% sequence similarity. Although 13% of these OTUs were found in more than one cave, the compositions of each community were significantly different from each other (P?0.001). Autotrophic productivity was positively correlated with overall species richness and with the number of bacterial OTUs affiliated with the Epsilonproteobacteria, a group known for sulfur cycling and chemolithoautotrophy. Higher rates of autotrophy were also strongly positively correlated to available metabolic energy sources, and specifically to dissolved sulfide concentrations. The relationship of autotrophic productivity and heterotrophic cycling rates to bacterial species richness can significantly impact the diversity of higher trophic levels in chemolithoautotrophically-based cave ecosystems, with the systems possessing the highest productivity supporting abundant and diverse macro-invertebrate communities.

Productivity-Diversity Relationships from Chemolithoautotrophically Based Sulfidic Karst Systems, 2009, Porter M. L. , Summers Engel A. , Kane T. C. , Kinkle B. K.

Although ecosystems thriving in the absence of photosynthetic processes are no longer considered unique phenomena, we have yet to understand how these ecosystems are energetically sustained via chemosynthesis. Ecosystem energetics were measured in microbial mats from active sulfidic caves (Movile Cave, Romania; Frasassi Caves, Italy; Lower Kane Cave, Wyoming, USA; and Cesspool Cave, Virginia, USA) using radiotracer techniques. We also estimated bacterial diversity using 16S rRNA sequences to relate the productivity measurements to the composition of the microbial communities. All of the microbial communities investigated were dominated by chemolithoautotrophic productivity, with the highest rates from Movile Cave at 281 g C/m2/yr. Heterotrophic productivities were at least one order of magnitude less than autotrophy from all of the caves. We generated 414 new 16S rRNA gene sequences that represented 173 operational taxonomic units (OTUs) with 99% sequence similarity. Although 13% of these OTUs were found in more than one cave, the compositions of each community were significantly different from each other (P≤0.001). Autotrophic productivity was positively correlated with overall species richness and with the number of bacterial OTUs affiliated with the Epsilonproteobacteria, a group known for sulfur cycling and chemolithoautotrophy. Higher rates of autotrophy were also strongly positively correlated to available metabolic energy sources, and specifically to dissolved sulfide concentrations. The relationship of autotrophic productivity and heterotrophic cycling rates to bacterial species richness can significantly impact the diversity of higher trophic levels in chemolithoautotrophically-based cave ecosystems, with the systems possessing the highest productivity supporting abundant and diverse macro-invertebrate communities.


Community Structure of Subsurface Biofilms in the Thermal Sulfidic Caves of Acquasanta Terme, Italy, 2010, Jones D. S. , Tobler D. J. , Schaperdoth I. , Mainiero M. , Macalady J. L.

We performed a microbial community analysis of biofilms inhabiting thermal (35 to 50°C) waters more than 60m below the ground surface near Acquasanta Terme, Italy. The groundwater hosting the biofilms has 400 to 830 mkM sulfide, <10 mkM O2, pH of 6.3 to 6.7, and specific conductivity of 8,500 to 10,500 mkS/cm. Based on the results of 16S rRNA gene cloning and fluorescent in situ hybridization (FISH), the biofilms have low species richness, and lithoautotrophic (or possibly mixotrophic) Gamma- and Epsilonproteobacteria are the principle biofilm architects. Deltaproteobacteria sequences retrieved from the biofilms have <90% 16S rRNA similarity to their closest relatives in public databases and may represent novel sulfate-reducing bacteria. The Acquasanta biofilms share few species in common with Frasassi cave biofilms (13°C, 80 km distant) but have a similar community structure, with representatives in the same major clades. The ecological success of Sulfurovumales-group Epsilonproteobacteria in the Acquasanta biofilms is consistent with previous observations of their dominance in sulfidic cave waters with turbulent water flow and high dissolved sulfide/oxygen ratios.


Results 1 to 4 of 4
You probably didn't submit anything to search for