MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology

Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That evolution is the process of natural consecutive modification in the inherited makeup of living things; the process. by which modern plants and animals have arisen from forms that lived in the past [23]. see also mutation.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for syndepositional (Keyword) returned 12 results for the whole karstbase:
Evaporites, brines and base metals: What is an evaporite? Defining the rock matrix, 1996, Warren J. K. ,
This paper, the first of three reviews on the evaporite-base-metal association, defines the characteristic features of evaporites in surface and subsurface settings. An evaporite is a rock that was originally precipitated from a saturated surface or near-surface brine in hydrological systems driven by solar evaporation. Evaporite minerals, especially the sulfates such as anhydrite and gypsum, are commonly found near base-metal deposits. Primary evaporites are defined as those salts formed directly via solar evaporation of hypersaline waters at the earth's surface. They include beds of evaporitic carbonates (laminites, pisolites, tepees, stromatolites and other organic rich sediment), bottom nucleated salts (e.g. chevron halite and swallow-tail gypsum crusts), and mechanically reworked salts (such as rafts, cumulates, cross-bedded gypsarenites, turbidites, gypsolites and halolites). Secondary evaporites encompass the diagenetically altered evaporite salts, such as sabkha anhydrites, syndepositional halite and gypsum karst, anhydritic gypsum ghosts, and more enigmatic burial associations such as mosaic halite and limpid dolomite, and nodular anhydrite formed during deep burial. The latter group, the burial salts, were precipitated under the higher temperatures of burial and form subsurface cements and replacements often in a non-evaporite matrix. Typically they formed from subsurface brines derived by dissolution of an adjacent evaporitic bed. Because of their proximity to 'true' evaporite beds, most authors consider them a form of 'true' evaporite. Under the classification of this paper they are a burial form of secondary evaporites. Tertiary evaporites form in the subsurface from saturated brines created by partial bed dissolution during re-entry into the zone of active phreatic circulation. The process is often driven by basin uplift and erosion. They include fibrous halite and gypsum often in shale hosts, as well as alabastrine gypsum and porphyroblastic gypsum crystals in an anhydritic host. In addition to these 'true' evaporites, there is another group of salts composed of CaSO4 or halite. These are the hydrothermal salts. Hydrothermal salts, especially hydrothermal anhydrite, form by the subsurface cooling or mixing of CaSO4- saturated hydrothermal waters or by the ejection of hot hydrothermal water into a standing body of seawater or brine. Hydrothermal salts are poorly studied but often intimately intermixed with sulfides in areas of base-metal accumulations such as the Kuroko ores in Japan or the exhalative brine deeps in the Red Sea. In ancient sediments and metasediments, especially in hydrothermally influenced active rifts and compressional belts, the distinction of this group of salts from 'true' evaporites is difficult and at times impossible. After a discussion of hydrologies and 'the evaporite that was' in the second review, modes and associations of the hydrothermal salts will be discussed more fully in the third review

Dedolomitization and other early diagenetic processes in Miocene lacustrine deposits, Ebro Basin (Spain), 1999, Arenas C, Zarza Ama, Pardo G,
A variety of meteoric diagenetic features reveal the development of a syngenetic karst on lacustrine deposits of the Ebro Basin. Diagenetic processes that operated on lacustrine laminated and stromatolitic carbonates include the following. (1) A first syndepositional stage with processes such as dolomitization, desiccation and related breccia formation and sulphate precipitation, either as lenticular gypsum crystals or nodules. This stage took place under progressive evaporation due to lake level fall, when the previous carbonate deposits became exposed as a supra-littoral fringe surrounding saline mud flats of adjacent sulphate depositional environments. (2) A second early diagenetic stage in which processes such as sulphate dissolution and collapse brecciation, dedolomitization, calcite spar cementation and silicification occurred as a result of meteoric water input that caused a progressive rise in lake level. Light isotopic compositions (delta(13)C and delta(18)O) of diagenetic calcites, versus heavier compositions in primary laminated and stromatolitic limestones, confirm a meteoric influence. The syngenetic karst is best developed at the boundary between two allostratigraphic units and coincided with one of the extensive stages of sulphate deposition at the end of the Early Miocene. The karst facies occurred in an area that was a low-relief barrier that separated two sites of sulphate deposition during low lake levels, This indicates that the karat development was controlled by topographic changes within the basin and record a shift from arid to wetter climatic conditions, as suggested by the overlying freshwater carbonate deposits. The presence of diagenetic features such as those described in the central Ebro Basin affecting saline lacustrine carbonates is relevant because they can be used as indicators of subaerial exposure periods in terrestrial environments and they also reveal important palaeogeographic and palaeoclimatic events of basinal extent.

The Salt That Wasn't There: Mudflat Facies Equivalents to Halite of the Permian Rustler Formation, Southeastern New Mexico, 2000, Powers Dennis W. , Holt Robert M. ,
Four halite beds of the Permian Rustler Formation in southeastern New Mexico thin dramatically over short lateral distances to correlative clastic (mudstone) beds. The mudstones have long been considered residues after post-burial dissolution (subrosion) of halite, assumed to have been deposited continuously across the area. Hydraulic properties of the Culebra Dolomite Member have often been related to Rustler subrosion. In cores and three shafts at the Waste Isolation Pilot Plant (WIPP), however, these mudstones display flat bedding, graded bedding, cross-bedding, erosional contacts, and channels filled with intraformational conglomerates. Cutans indicate early stages of soil development during subaerial exposure. Smeared intraclasts developed locally as halite was removed syndepositionally during subaerial exposure. We interpret these beds as facies formed in salt-pan or hypersaline-lagoon, transitional, and mudflat environments. Halite is distributed approximately as it was deposited. Breccia in limited areas along one halite margin indicates post-burial dissolution, and these breccias are key to identifying areas of subrosion. A depositional model accounts for observed sedimentary features of Rustler mudstones. Marked facies and thickness changes are consistent with influence by subsidence boundaries, as found in some modern continental evaporites. A subrosion model accounts for limited brecciated zones along (depositional) halite margins, but bedding observed in the mudstones would not survive 90% reduction in rock volume. Depositional margins for these halite beds will be useful in reconstructing detailed subsidence history of the Late Permian in the northern Delaware Basin. It also no longer is tenable to attribute large variations in Culebra transmissivity to Rustler subrosion

Diagenetic History of Pipe Creek Jr. Reef, Silurian, North-Central Indiana, U.S.A, 2000, Simo J. A. , Lehmann Patrick J. ,
Calcite cements in the Silurian (Ludlovian) Pipe Creek Jr. Reef, north-central Indiana, are compositionally zoned with characteristic minor-element concentrations and stable-isotope signatures, and were precipitated in different diagenetic environments. Superposition and crosscutting relationships allow us to group cement zones and to relate them to the sequence stratigraphic evolution of the reef. Pipe Creek Jr. Reef grew in normal marine waters, with the reef top high (greater than 50 m) above the platform floor. Flank facies are volumetrically important and are preserved largely as limestone, in contrast to most dolomitized Silurian reefs in the midcontinent. Syndepositional marine cements fill primary porosity and synsedimentary fractures and are interlayered with marine internal sediment. Now low-magnesium calcite, their isotopic compositions are similar to those of depositional grains and cements estimated to have precipitated from Ludlovian sea waters. Depositional porosity was reduced by 75% by the precipitation of these syndepositional cements, which stabilized the steeply dipping flank slope. Postdepositional, clear calcite cements are interpreted as shallow-phreatic and burial cements on the basis of their relationship to periods of karstification and fracturing. Shallow-phreatic cements, with concentric cathodoluminescent (CL) zonation, precipitated in primary pores and are postdated by fractures and caves filled with Middle Devonian sandstone. CL zonal boundaries are sharp, and some, near a major stratigraphic unconformity, show evidence of dissolution. The volumetric abundance of the individual CL zones varies in the reef, indicating a complex superposition of waters of varying chemistry and rock-water interaction that are probably related to relative sea-level changes. This important aspect of the reef stratigraphy is recorded only by the diagenetic succession, because evidence of earlier sea-level changes is removed by a major later regional unconformity. Burial cements are the youngest diagenetic feature recognized, and they rest conformably or unconformably over older cements. They exhibit both concentric CL zonation and sectoral zoning, they are ferroan to nonferroan, and they contain thin sulfide zones along growth-band boundaries. Their isotopic compositions do not overlap with shallow-phreatic or marine cement values. Degraded oil postdates burial cements, and is composed of the same sterane class as the Devonian-age Antrim Shale, the probable source rock. This source contrasts with that of reef reservoirs in the Michigan Basin, where Silurian strata are commonly the hydrocarbon source

Concepts and models of dolomitization: a critical reappraisal, 2004, Machel Hans G. ,
Despite intensive research over more than 200 years, the origin of dolomite, the mineral and the rock, remains subject to considerable controversy. This is partly because some of the chemical and/or hydrological conditions of dolomite formation are poorly understood, and because petrographic and geochemical data commonly permit more than one genetic interpretation. This paper is a summary and critical appraisal of the state of the art in dolomite research, highlighting its major advances and controversies, especially over the last 20-25 years. The thermodynamic conditions of dolomite formation have been known quite well since the 1970s, and the latest experimental studies essentially confirm earlier results. The kinetics of dolomite formation are still relatively poorly understood, however. The role of sulphate as an inhibitor to dolomite formation has been overrated. Sulphate appears to be an inhibitor only in relatively low-sulphate aqueous solutions, and probably only indirectly. In sulphate-rich solutions it may actually promote dolomite formation. Mass-balance calculations show that large water/rock ratios are required for extensive dolomitization and the formation of massive dolostones. This constraint necessitates advection, which is why all models for the genesis of massive dolostones are essentially hydrological models. The exceptions are environments where carbonate muds or limestones can be dolomitized via diffusion of magnesium from seawater rather than by advection. Replacement of shallow-water limestones, the most common form of dolomitization, results in a series of distinctive textures that form in a sequential manner with progressive degrees of dolomitization, i.e. matrix-selective replacement, overdolomitization, formation of vugs and moulds, emplacement of up to 20 vol% calcium sulphate in the case of seawater dolomitization, formation of two dolomite populations, and -- in the case of advanced burial -- formation of saddle dolomite. In addition, dolomite dissolution, including karstification, is to be expected in cases of influx of formation waters that are dilute, acidic, or both. Many dolostones, especially at greater depths, have higher porosities than limestones, and this may be the result of several processes, i.e. mole-per-mole replacement, dissolution of unreplaced calcite as part of the dolomitization process, dissolution of dolomite due to acidification of the pore waters, fluid mixing (mischungskorrosion), and thermochemical sulphate reduction. There also are several processes that destroy porosity, most commonly dolomite and calcium sulphate cementation. These processes vary in importance from place to place. For this reason, generalizations about the porosity and permeability development of dolostones are difficult, and these parameters have to be investigated on a case-by-case basis. A wide range of geochemical methods may be used to characterize dolomites and dolostones, and to decipher their origin. The most widely used methods are the analysis and interpretation of stable isotopes (O, C), Sr isotopes, trace elements, and fluid inclusions. Under favourable circumstances some of these parameters can be used to determine the direction of fluid flow during dolomitization. The extent of recrystallization in dolomites and dolostones is much disputed, yet extremely important for geochemical interpretations. Dolomites that originally form very close to the surface and from evaporitic brines tend to recrystallize with time and during burial. Those dolomites that originally form at several hundred to a few thousand metres depth commonly show little or no evidence of recrystallization. Traditionally, dolomitization models in near-surface and shallow diagenetic settings are defined and/or based on water chemistry, but on hydrology in burial diagenetic settings. In this paper, however, the various dolomite models are placed into appropriate diagenetic settings. Penecontemporaneous dolomites form almost syndepositionally as a normal consequence of the geochemical conditions prevailing in the environment of deposition. There are many such settings, and most commonly they form only a few per cent of microcrystalline dolomite(s). Many, if not most, penecontemporaneous dolomites appear to have formed through the mediation of microbes. Virtually all volumetrically large, replacive dolostone bodies are post-depositional and formed during some degree of burial. The viability of the many models for dolomitization in such settings is variable. Massive dolomitization by freshwater-seawater mixing is a myth. Mixing zones tend to form caves without or, at best, with very small amounts of dolomite. The role of coastal mixing zones with respect to dolomitization may be that of a hydrological pump for seawater dolomitization. Reflux dolomitization, most commonly by mesohaline brines that originated from seawater evaporation, is capable of pervasively dolomitizing entire carbonate platforms. However, the extent of dolomitization varies strongly with the extent and duration of evaporation and flooding, and with the subsurface permeability distribution. Complete dolomitization of carbonate platforms appears possible only under favourable circumstances. Similarly, thermal convection in open half-cells (Kohout convection), most commonly by seawater or slightly modified seawater, can form massive dolostones under favourable circumstances, whereas thermal convection in closed cells cannot. Compaction flow cannot form massive dolostones, unless it is funnelled, which may be more common than generally recognized. Neither topography driven flow nor tectonically induced ( squeegee-type') flow is likely to form massive dolostones, except under unusual circumstances. Hydrothermal dolomitization may occur in a variety of subsurface diagenetic settings, but has been significantly overrated. It commonly forms massive dolostones that are localized around faults, but regional or basin-wide dolomitization is not hydrothermal. The regionally extensive dolostones of the Bahamas (Cenozoic), western Canada and Ireland (Palaeozoic), and Israel (Mesozoic) probably formed from seawater that was pumped' through these sequences by thermal convection, reflux, funnelled compaction, or a combination thereof. For such platform settings flushed with seawater, geochemical data and numerical modelling suggest that most dolomites form(ed) at temperatures around 50-80 {degrees}C commensurate with depths of 500 to a maximum of 2000 m. The resulting dolostones can be classified both as seawater dolomites and as burial dolomites. This ambiguity is a consequence of the historical evolution of dolomite research

Origin of Meter-Scale Submarine Cavities and Herringbone Calcite Cement in a Cambrian Microbial Reef, Ledger Formation (U.S.A.), 2004, De Wet Cb, Frey Hm, Gaswirth Sb, Mora Ci, Rahnis M, Bruno Cr,
Meter-scale submarine cavities in Middle Cambrian shelf-margin microbial reef strata indicate large-scale dewatering processes, in conjunction with substrate instability related to interreef channeling and shelf-edge downslope creep and slip. Syndepositional cement precipitation within the cavities preserved delicate microbial fabrics and stabilized the reef system. Radiaxial fibrous calcite and herringbone calcite cements line the cavity interiors isopachously. The two phases cannot be discriminated on the basis of Fe, Mn, or Sr contents, but do have different isotopic signatures. Slightly more negative {delta}13C values in herringbone calcite suggest that abrupt transitions between radiaxial fibrous and herringbone calcite cement are the result of rapid and repeated changes in pore-fluid oxygen levels. Storm-driven pore-water circulation renewed oxygenated seawater flow into the cavities, resulting in precipitation of radiaxial fibrous calcite. A threshold level of oxygen reduction resulted in the change to herringbone calcite precipitation. The pore fluids associated with herringbone calcite did not have elevated Mn or Fe concentrations, as suggested in previous studies. Herringbone calcite appears to be more susceptible to diagenetic alteration than radiaxial fibrous cement however, as indicated by greater resetting of oxygen isotope values

The effect of syndepositional deformation within the Upper Permian Capitan Platform on the speleogenesis and geomorphology of the Guadalupe Mountains, New Mexico, USA, 2006, Kosa Eduard, Hunt David W. ,
The Guadalupe Mountains in New Mexico and Texas are home to more than 300 caves. Caves have been formed within the Upper Permian Capitan carbonate platform and are oriented along two structural trends, one of which is parallel to the platform margin and the other of which is roughly perpendicular to it. Our recent studies of the Capitan Platform have identified syndepositional faults associated with growth monoclines and synclines in Slaughter Canyon, New Mexico, and these are also parallel to the platform margin. In this study, we demonstrate that syndepositional faults and folds are also present in Rattlesnake and Walnut Canyons, as much as 19 km along strike, and that they have exerted control on karstification of the Guadalupe Mountains from the Upper Permian until present.Three distinctive episodes of karst formation have been recognised in outcrops on the basis of karst-filling deposits and crosscutting relationships. The syndepositional 'Phase 1 karst' was formed along syndepositional faults and fractures and is filled by platform-derived sediments. The burial 'Phase 2 karst' is filled by post-Permian siliciclastics and is limited to the youngest syndepositional faults and fractures that penetrate the platform in the proximity of its terminal margin. Connectivity of these youngest faults and fractures to the platform top and the overlying stratigraphy is inferred to have controlled the distribution of the Phase 2 karst. The 'Phase 3 karst' includes the present cave systems, which were mainly formed by sulphuric acid produced by mixing of fossil and fresh underground waters in conjunction with the uplift of the Guadalupe Mountains in the Late Tertiary, and have since been modified by vadose karst processes. The Phase 3 karst caves are not solely developed along syndepositional faults and fractures as the earlier karst palaeocaverns are, but also follow another, uplift-related, structural trend.Syndepositional folds, faults, and fractures in the Capitan Platform have influenced the shaping of the modern surface geomorphology of the Guadalupe Mountains by controlling drainage and, hence, erosion. Trellis drainage parallel to the platform margin is developed where syndepositional folds, faults, and fractures occur. The morphology of the trellis drainage varies systematically across the range in response to the character of the deformation structures and karst features along which the drainage channels have developed

Heterogeneity in Fill and Properties of Karst-Modified Syndepositional Faults and Fractures: Upper Permian Capitan Platform, New Mexico, U.S.A, 2006, Kosa Eduard, Hunt David W. ,
This study examines the heterogeneity in properties of syndepositional faults and fractures found in the Upper Permian Capitan carbonate platform, Guadalupe Mountains, New Mexico. Syndepositional faults and fractures grew incrementally, and were repeatedly exploited by early karst as the platform developed. Primary fault and fracture rocks were preferentially dissolved to form structure-controlled paleocaverns, which were subsequently filled with platform-derived sediments. These are divided here into three groups: (i) carbonate-dominated, (ii) siliciclastic-dominated, and (iii) mixed carbonate-siliciclastic lithologies. The affinity of the paleocavern-filling deposits to platform strata permits linking of the different fill types to different stages of sea-level cycle. Consequently, periods of dissolution and deposition within paleocaverns can be tied to the platform's sequence stratigraphy. Paleocavern-filling sediments have a distinct vertical stratigraphy, and are observed to vary with distance from the platform margin over a distance of 2.6 km. Their distribution is thus to some extent predictable. Vertical and lateral variability in paleocavern fill is chiefly related to siliciclastic-filled karstic chimneys that narrow downwards and tend to become more frequent and laterally extensive upwards. This is because upper structural levels of fault and fracture zones were more frequently opened by early karst, and also because siliciclastics are not prone to dissolution, whereas carbonates are. Across platform, karst-modified faults and fractures located close to the platform margin are dominated by carbonate lithologies. The proportion and vertical penetration of siliciclastics increases with distance from platform margin. These patterns appear to reflect variations in the frequency and duration of subaerial exposure events across the basinward-inclined Capitan platform. The results of this study have implications for understanding properties of early faults and fractures in carbonate strata. Faults and fractures presented here are heterogeneous, and the heterogeneity is related principally to distribution of sedimentary rocks within paleocaverns developed along them. As a consequence, their properties are not related to dimensions or throw, as is the case for faults and fractures within siliciclastic rocks. Data and interpretations presented here have implications for Capitan hydrocarbon reservoirs, and can be applied to characterization of faults and fractures in other carbonate platforms subjected to early deformation

Controls on paleokarst heterogeneity. Integrated study of the Upper Permian syngenetic karst in Rattlesnake Canyon, Guadalupe Mountains, USA, 2011, Labraa De Miguel, Gemma

The present study contributes to a better understanding of early dissolution mechanisms for syngenetic karst development and provides constraints on the timing of formation of the Rattlesnake Canyon paleokarst system in the Guadalupe Mountains, New Mexico, U.S.A. Paleozoic paleokarsts commonly undergo burial and collapse, which reduces significantly the preservation of early fracture networks and geometries of dissolution. Rattlesnake Canyon constitutes a magnificent scenario for the study of global controls on Upper Permian karsting since early fracture networks and dissolution geometries are extremely well preserved and lack major tectonic deformation. This thesis sheds light on the scientific knowledge of paleokarsts and can be of interest to the oil industry since paleokarsts are common targets of exploration. As the evolution of the reservoir properties is often diagenetically controlled, the diagenetic study was particularly useful in determining the degree of sealing following hydrocarbon charge. 1) Aims This thesis seeks to improve our understanding of the relationship between early syndepositional fracture networks that are typically found in platform margins and syngenetic karst development. The thesis includes multidisciplinary carbonate studies aimed at understanding the multiscale paleokarst heterogeneity by means of (i) the development of a conceptual model for the karst evolution, (ii) the construction of a 3D paleokarst model, (iii) the determination of the diagenetic history of the paleokarst system and (iv) the paleokarst reservoir characterization. 2) Thesis Structure The thesis consists of 9 chapters and 2 appendices. Chapter 1 sets out the rationale for this thesis. Chapter 2 provides an introduction to the most basic aspects of karst science and to the hydrogeological model of Carbonate Island as well as an overview of the state-of-the-art paleokarst studies. The geological setting and the study area is detailed in Chapter 3. The results of the thesis are contained in Chapters 4 to 7. Because of the multidisciplinary nature of this thesis, each of these chapters is dedicated to one discipline. Chapter 4 focuses on the analysis of field data to obtain a conceptual model for the evolution of the paleokarst system. Chapter 5 discusses the methodology to implement the 3D paleokarst model and provides data to assess the dimensions of the system in subsurface. Chapter 6 focuses on the diagenetic stages that affected and controlled the karst development. Finally, Chapter 6 offers a paleokarst reservoir characterization. A comprehensive approach and discussion of the results obtained in each of these chapters are included in Chapter 8. General and specific conclusions are presented in Chapter 9. Appendix One contains a representative image compendium of the petrographic features observed in the paleokarst filling sequence of Fault N. Appendix Two sets out the raw data from the geochemical analysis. The paleokarst analysis using different disciplines provides a complete characterization of paleokarst heterogeneity and enables us to elucidate the controls of the system.


Flank margin caves in carbonate islands and the effects of sea level., 2013, Mylroie J. E. , Mylroie J. R.

Flank margin caves form in the diffuse flow field of the distal margin of the freshwater lens on carbonate islands and coasts. Dissolution is governed by superposition of mixing zones at the top and bottom of the lens. Flow velocities in the lens margins and organic decay at the lens boundaries enhance dissolution. These caves grow from isolated initiation points in the lens into chambers that amalgamate to form complex, vertically restricted, globular-chamber complexes. The caves and their deposits accurately represent sea-level position and paleoclimate but must be successfully differentiated from sea caves and other pseudokarst features..


DEEP TIME ORIGINS OF SINKHOLE COLLAPSE FAILURES IN SEWAGE LAGOONS IN SOUTHEAST MINNESOTA, 2013, Alexander Jr. E. C. , Runkel A. C. , Tipping R. G.

Three of the approximately twenty-three municipal wastewater treatment lagoons constructed in the 1970s and 1980s in southeastern Minnesota’s karst region have failed through sinkhole collapse. Those collapses occurred between 1974 and 1992. All three failures occurred at almost exactly the same stratigraphic position. That stratigraphic interval, just above the unconformable contact between the Shakopee and Oneota Formations of the Ordovician Prairie du Chien Group is now recognized as one of the most ubiquitous, regional-scale, karst hydraulic high-transmissivity zones in the Paleozoic hydrostratigraphy of southeastern Minnesota. These karst aquifers have been developing multi-porosity conduit flow systems since the initial deposition of the carbonates about 480 million years ago. The existence of syndepositional interstratal karst unconformities between the Oneota and Shakopee Formations and between the Shakopee and St. Peter Formations, were recognized in the 1800s. About 270 million years ago galena, sphalerite and iron sulfides were deposited in pre-existing solution enlarged joints, bedding planes and caves. The region has been above sea level since the Cretaceous and huge volumes of fresh water have flowed through these rocks. The regional flow systems have changed from east-to-west in the Cenozoic, to north-to-south in or before the Pleistocene. The incision of the Mississippi River and its tributaries has and is profoundly rearranging the ground water flow systems as it varies the regional base levels during glacial cycles. The Pleistocene glacial cycles have removed many of the surficial karst features and buried even more of them under glacial sediments. High erosion rates from row crop agriculture between the us1850s and 1930s filled many of the conduit systems with soil. Over eighty years of soil conservation efforts have significantly reduced the flux of mobilized soil into the conduits. Those conduits are currently flushing much of those stored soils out of their spring outlets. Finally, the increased frequency and intensity of major storm events is reactivating conduit segments that have been clogged and inactive for millions of years.The karst solution voids into which the lagoons collapsed have formed over 480 million years. The recognition and mapping of this major karst zone will allow much more accurate karst hazard maps to be constructed and used in sustainable resource management decisions.


Karstification of Dolomitic Hills at south of Coimbra (western-central Portugal) - Depositional facies and stratigraphic controls of the (palaeo)karst affecting the Coimbra Group (Lower Jurassic), 2014, Dimuccio, Luca Antonio

An evolutionary model is proposed to explain the spatio-temporal distribution of karstification affecting the Lower Jurassic shallow-marine carbonate succession (Coimbra Group) of the Lusitanian Basin, cropping out in the Coimbra-Penela region (western-central Portugal), in a specific morphostructural setting (Dolomitic Hills). Indeed, in the Coimbra Group, despite the local lateral and vertical distributions of dolomitic character and the presence of few thick sandy-argillaceous/shale and marly interbeds, some (meso)karstification was identified, including several microkarstification features. All types of karst forms are commonly filled by autochthonous and/or allochthonous post-Jurassic siliciclastics, implying a palaeokarstic nature.

The main aim of this work is to infer the interplay between depositional facies, diagenesis, syn- and postdepositional discontinuities and the spatio-temporal distribution of palaeokarst. Here, the palaeokarst concept is not limited to the definition of a landform and/or possibly to an associated deposit (both resulting from one or more processes/mechanisms), but is considered as part of the local and regional geological record.

Detailed field information from 21 stratigraphic sections (among several dozens of other observations) and from structural-geology and geomorphological surveys, was mapped and recorded on graphic logs showing the lithological succession, including sedimentological, palaeontological and structural data. Facies determination was based on field observations of textures and sedimentary structures and laboratory petrographic analysis of thin-sections. The karst and palaeokarst forms (both superficial and underground) were classified and judged on the basis of present-day geographic location, morphology, associated discontinuities, stratigraphic position and degree of burial by post-Jurassic siliciclastics that allowed to distinguish a exposed karst (denuded or completely exhumed) than a palaeokarst (covered or partially buried).

A formal lithostratigrafic framework was proposed for the local ca. 110-m-thick combined successions of Coimbra Group, ranging in age from the early Sinemurian to the early Pliensbachian and recorded in two distinct subunits: the Coimbra formation, essentially dolomitic; and the overlying S. Miguel formation, essentially dolomitic-limestone and marly-limestone.

The 15 identified facies were subsequently grouped into 4 genetically related facies associations indicative of sedimentation within supra/intertidal, shallow partially restricted subtidal-lagoonal, shoal and more open-marine (sub)environments - in the context of depositional systems of a tidal flat and a very shallow, inner part of a low-gradient, carbonate ramp. In some cases, thick bedded breccia bodies (tempestites/sismites) are associated to synsedimentary deformation structures (slumps, sliding to the W to NW), showing the important activity of N–S and NNE–SSW faults, during the Sinemurian. All these deposits are arranged into metre-scale, mostly shallowing-upward cycles, in some cases truncated by subaerial exposure events. However, no evidence of mature pedogenetic alteration, or the development of distinct soil horizons, was observed. These facts reflect very short-term subaerial exposure intervals (intermittent/ephemeral), in a semiarid palaeoclimatic setting but with an increase in the humidity conditions during the eogenetic stage of the Coimbra Group, which may have promoted the development of micropalaeokarstic dissolution (eogenetic karst).

Two types of dolomitization are recognized: one (a) syndepositional (or early diagenetic), massive-stratiform, of “penesaline type”, possibly resulting from refluxing brines (shallow-subtidal), with a primary dolomite related to the evaporation of seawater, under semiarid conditions (supra/intertidal) and the concurrent action of microbial activity; another (b) later, localized, common during diagenesis (sometimes with dedolomitization), particularly where fluids followed discontinuities such as joints, faults, bedding planes and, in some cases, pre-existing palaeokarstic features.

The very specific stratigraphic position of the (palaeo)karst features is understood as a consequence of high facies/microfacies heterogeneities and contrasts in porosity (both depositional and its early diagenetic modifications), providing efficient hydraulic circulation through the development of meso- and macropermeability contributed by syn- and postdepositional discontinuities such as bedding planes, joints and faults. These hydraulic connections significantly influenced and controlled the earliest karst-forming processes (inception), as well as the degree of subsequent karstification during the mesogenetic/telogenetic stages of the Coimbra Group. Multiple and complex karstification (polyphase and polygenic) were recognized, including 8 main phases, to local scale, integrated in 4 periods, to regional scale: Jurassic, Lower Cretaceous, pre-Pliocene and Pliocene-Quaternary. Each phase of karstification comprise a specific type of (palaeo)karst (eogenetic, subjacent, denuded, mantled-buried and exhumed).

Finally, geological, geomorphological and hydrogeological characteristics allowed to describe the local aquifer. The elaborated map of intrinsic vulnerability shows a karst/fissured and partially buried aquifer (palaeokarst) with high to very high susceptibility to the contamination.


Results 1 to 12 of 12
You probably didn't submit anything to search for