MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology

Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That transmissivity is the rate at which water of the prevailing kinematic viscosity is transmitted through a unit width of an aquifer under a unit hydraulic gradient [6]. though spoken of as a property of the aquifer, it embodies the saturated thickness and the properties of the contained liquid as well. it is equal to an integration of the hydraulic conductivities across the saturated part of the aquifer perpendicular to the flow paths [22].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for troglobites (Keyword) returned 45 results for the whole karstbase:
Showing 1 to 15 of 45
Cave Animals and Their Environment, 1962, Richards, Aola M.

Caves can be divided into three distinct regions - the twilight zone, the transitional zone and the troglic zone. The main physical characters of caves - light, air currents, temperature and humidity - are discussed in relation to their effect on cave fauna. Various classifications of cave animals are mentioned, and those of Schiner and Jeannel discussed in detail. The paucity of food in caves, and its effect on the animal population is considered. Mention is made of the loss of secondary sexual characters and seasonal periodicity of breeding among true troglobites. Cave animals have undergone many adaptations to their environment, the most interesting of these being blindness and loss of pigment. Hyper-development of tactile, gustatory, olfactory and auditory organs and general slenderness of body, are correlated with eye degeneration. Several theories on the origin of cave fauna are discussed, and the importance of isolation on the development of cave fauna considered.


Annotated Checklist of the Macroscopic Troglobites of Virginia with Notes on Their Geographic Distribution, 1963, Holsinger, John R.

The birth of Biospeleology., 1964, Motas Constantin
Modern biospeleology dates from May 15, 1907, with the publication of Racovitza's "Essai sur les problmes biospologiques." In this paper he posed; if he did not answer; every question raised by life in the subterranean world. He outlined a program of biospeological research, made an analysis of the conditions of existence in the subterranean domain and their influence upon cavernicoles, discussed the evolution of subterranean biota, their geographical distribution, etc. Racovitza modified Schiner's (1854) classification, dividing cavernicoles into troglobites, troglophiles and trogloxenes, terms later adopted by a great number of biospeologists. The "Essai", called "Racovitza's famous manifest" by Vandel, was considered the birth certificate of biospeology by Antipa (1927) and by Jeannel (1948), its fundamental statute. Jeannel also made major contributions to the young science through his extensive and detailed studies. The names of Racovitza and Jeannel will always be linked as the uncontested masters of biospeology, the founders of Biospeologica, and the authors of Enumration des grottes visites. Apart from Schiner, whose ecological classification of cavernicoles was utilized and modified by Racovitza, they had another forerunner in Vir, a passionate speleologist who often accompanied Martel in his subterranean explorations, once meeting with a serious accident in which he was on the brink of death. Vir (1897, 1899) studied subterranean faunas, establishing the world's first underground laboratory, where he carried on unsuccessful or ill-interpreted experiments. We consider Racovitza and Jeannel's criticism of him too severe. Let us be more lenient with our forerunners, since their mistakes have also contributed to the progress of science, as well as exempting us from repeating them.

Remarks on the Japygidae (Insecta, Diplura) reported for the underground environment., 1964, Pages Jean
About 50 japygids, belonging to 29 distinct forms of which 23 are recognizable, have been collected since 1874 in caves all over the world. A list is given, by continent and by countries. Ten species found both in the soil and in caves are called troglophiles to emphasize the sorting which seems to occur among endogenous species. Of the remaining 13 species, all considered troglobites, only 3 show morphological peculiarities which can be ascribed to adaptation to cavernicolous life: (1) Metajapyx moroderi ssp. patrizianus Pags from Sardinia shows a slightly longer l0th urite and cerci than the f. typ.; (2) Kohjapyx lindbergi Pags from Afghanistan is characterized by its very long l0th urite, its relatively slender cerci, and the presence of more than 8 placoid sensillae (maximum basic number in endogenous species) on the apical segment of the antennae; (3) Austrjapyx leleupi Pags from the Lower Congo fits most closely the picture of the true troglobite; almost entirely depigmented, slender, with elongate legs, long setae, and the antennae with two of the trichobothria 4 to 5 times as long as the other typical 11, as well as 14 placoid sensillae on the apical segment. It is noted in the conclusion that, among the Diplura and Myriapoda, the almost exclusively phytophagous or saprophagous Campodeids and millipedes include a large number of true troglobites, in contrast with the carnivorous Japygids and centipedes, which have very few troglobites.

Tasmanian Cave Fauna: Character and Distribution, 1967, Goede, A.

The geology and nature of the caves is discussed. Cave development has been affected by glacial outwash and periglacial conditions which must be taken into account when considering the development and distribution of cave fauna. The food supply in the caves is limited by the absence of cave-inhabiting bats. Floods while adding to the food supply must be destructive to some forms of terrestrial cave life. The cave fauna consists entirely of invertebrates. The carab genus Idacarabus Lea contains the only troglobites found in Tasmania. A common troglophile throughout the island is Hickmania troglodytes (Higgins and Petterd) which belongs to a very small group of relict spiders. Five species of cave crickets are known from Tasmania and Flinders Island. Three species belong to the genus Micropathus Richards and show an interesting distribution pattern. A single species of glow-worm, Arachnocampa (Arachnocampa) tasmaniensis Ferguson occurs in a number of Tasmanian caves. It is more closely related to the New Zealand species than to glow worms found on the Australian mainland. Other terrestrial cave life is briefly discussed. Aquatic cave life is poorly known. The syncarid Anaspides tasmaniae (Thomson) has been recorded from several caves. It differs from epigean forms in reduction of pigment.


Ecological studies in the Mamoth Cave System of Kentucky. I. The Biota., 1968, Barr Thomas C.
The Mammoth Cave system includes more than 175 kilometers of explored passages in Mammoth Cave National Park, Kentucky. Although biologists have explored the caves intermittently since 1822, the inventory of living organisms in the system is still incomplete. The present study lists approximately 200 species of animals, 67 species of algae, 27 species of fungi, and 7 species of twilight-zone bryophytes. The fauna is composed of 22% troglobites, 36% troglophiles, 22% trogloxenes, and 20% accidentals, and includes protozoans, sponges, triclads, nematodes, nematomorphs, rotifers, oligochaetes, gastropods, cladocerans, copepods, ostracods, isopods, amphipods, decapods, pseudoscorpions, opilionids, spiders, mites and ticks, tardigrades, millipedes, centipedes, collembolans, diplurans, thysanurans, cave crickets, hemipterans, psocids, moths, flies, fleas, beetles, fishes, amphibians, birds, and mammals. The Mammoth Cave community has evolved throughout the Pleistocene concomitantly with development of the cave system. The troglobitic fauna is derived from 4 sources: (1) troglobite speciation in situ in the system itself; (2) dispersal along a north Pennyroyal plateau corridor; (3) dispersal along a south Pennyroyal plateau corridor; and (4) dispersal across the southwest slope of the Cumberland saddle merokarst.

On living troglobes in the waters of an Iron Mine in Lorraine., 1968, Henry Jean Paul, Marvillet Claude
Two explorations of the galleries of the Orne-Pauline iron mine at Moyeuvre-Grande (Moselle), made one year apart, resulted in the collection on each occasion of varied and abundant material (5 spp. of peracarid crustaceans and a worm) of aquatic troglobites: 3 spp. of Niphargus, one of which is new to Lorraine (N. kochianus kochianus), 2 spp. of isopods, Asellus cavaticus and Caecosphaeroma burgundum (for which this is the northernmost locality), and finally a local form of Dendrocoelides collini.

Ecological studies in the Mamoth Cave System of Kentucky. I. The Biota., 1968, Barr Thomas C.
The Mammoth Cave system includes more than 175 kilometers of explored passages in Mammoth Cave National Park, Kentucky. Although biologists have explored the caves intermittently since 1822, the inventory of living organisms in the system is still incomplete. The present study lists approximately 200 species of animals, 67 species of algae, 27 species of fungi, and 7 species of twilight-zone bryophytes. The fauna is composed of 22% troglobites, 36% troglophiles, 22% trogloxenes, and 20% accidentals, and includes protozoans, sponges, triclads, nematodes, nematomorphs, rotifers, oligochaetes, gastropods, cladocerans, copepods, ostracods, isopods, amphipods, decapods, pseudoscorpions, opilionids, spiders, mites and ticks, tardigrades, millipedes, centipedes, collembolans, diplurans, thysanurans, cave crickets, hemipterans, psocids, moths, flies, fleas, beetles, fishes, amphibians, birds, and mammals. The Mammoth Cave community has evolved throughout the Pleistocene concomitantly with development of the cave system. The troglobitic fauna is derived from 4 sources: (1) troglobite speciation in situ in the system itself; (2) dispersal along a north Pennyroyal plateau corridor; (3) dispersal along a south Pennyroyal plateau corridor; and (4) dispersal across the southwest slope of the Cumberland saddle merokarst.

On living troglobes in the waters of an Iron Mine in Lorraine., 1968, Henry Jean Paul, Marvillet Claude
Two explorations of the galleries of the Orne-Pauline iron mine at Moyeuvre-Grande (Moselle), made one year apart, resulted in the collection on each occasion of varied and abundant material (5 spp. of peracarid crustaceans and a worm) of aquatic troglobites: 3 spp. of Niphargus, one of which is new to Lorraine (N. kochianus kochianus), 2 spp. of isopods, Asellus cavaticus and Caecosphaeroma burgundum (for which this is the northernmost locality), and finally a local form of Dendrocoelides collini.

Biogeography of Troglobites, 1971, Barr Thomas C. , Holsinger John R.

Biogeography of Troglobites. Reply, 1971, Poulson, Thomas L. White, William B.

Temperate preference responses of some aquatic, cave-adapted Crustaceans from Central Texas and Northeastern Mexico., 1973, Elliot William R. , W. Mitchell Robert
The temperature preference responses of five species of troglobite crustaceans were studied in a 15-30C gradient. Stygonectes hadenoecus, S. russelli and Asellus reddelli had no discernible temperature preferenda. Speocirolana bolivari had a weak preference for 20-30C. Cirolanides texensis had a pronounced preference for 20-30C, temperatures much warmer than that of its habitat. The lack of temperature preferenda in three species agrees with the hypothesis that imprisoned troglobites tend to lose responses to those environmental variables which are constant in caves. S. bolivari may retain its temperature selectivity because of a slow rate of cave-adaptation. It is hypothised that C. texensis is recently descended from a tropical, epigean, freshwater ancestor.

Branchiobdellids (Annelida: Clitellata) from some Eastern North American caves, with descriptions of new species of the Genus Cambarincola., 1973, Holt Perry C.
Branchiobdellids are found as epizoites on crustaceans of the orders Isopoda and Decapoda (cambarine crayfishes) in caves of eastern North America. Species that may be considered as troglobites, since they are not known from epigean waters, appear to be confirmed to truly troglobitic isopods and possibly a few troglobitic crayfishes from Florida and the Tennessee-Kentucky Highland Rim cave belt. The majority of the records of branchiobdellids from caves are of representatives of common epigean forms epizootic un crayfishes. Cross-referenced lists of branchiobdellids, their hosts and cave localities are presented. Some of the new species described are apparently troglobitic or troglophilic, but they present no consistent phylogenetic or geographical pattern and separate origins for them from primitive stocks of the genus Cambarincola are postulated.

Ecological and evolutive aspects of the communities of temperate and tropical caves: observations on the biological cycles of some species of Ptomaphagus (Coleoptera Catopidae)., 1973, Sbordoni Marina Cobolli, Sbordoni Valerio
Differences between tropical and temperate cave communities are an important topic in the actual biospeleological thinking. Among the most striking differences is the paucity of terrestrial troglobites in tropical caves. This fact may depend on the higher energy input into tropical caves which lessens the selection pressures for energy-economizing troglobite adaptations. Consequently evolutionary rates would be slowed in tropical caves and, in a date group, troglobites would appear later in such caves than in temperate ones with lower energy input. In order to investigate this point the authors studied the degree of adaptation to the cave environment in two species of Mexican Ptomaphagus which, being phylogenetically related, probably descend from the same epigean ancestor. Among these species the first one, P. troglomexicanus Peck, lives in a typical temperate cave (i.e. cold, high altitude cave, with scarce food supply) in the Sierra de Guatemala (Tamaulipas), the other one, P. spelaeus (Bilimek), populates tropical caves (i.e. warm, lowland cave, with rich food supply) in the State of Guerrero. In addition a comparison is made with P. pius Seidlitz, an epigean species from southern Europe. The results show a striking difference between P. troglomexicanus on a side and the other two species. Differences chiefly concern morphological features such as relative antenna length, structural complexity (i.e. the number of sensilla) of the antenna chemioreceptor organs in the 70, 90, 100 segments, degree of reduction of eye, wing and pigmentation and physiological ones such as the length of the life cycle. The possible causes of these differences are discussed. According to the authors these differences appear due to the different selection pressures acting in the two types of caves. In addition a comparison between the "tropical cave" species, P. spelaeus, with the epigean one, P. pius, does not point out the differences that one could expect by the diverse ecology of these species. These observations support the idea that evolutionary rates in cavernicoles are strongly affected by the ecology of the cave, mainly depending on the degree of energy input, and are poorly consistent with the hypothesis that mutations affecting degenerative processes are selectively neutral.

Temperate preference responses of some aquatic, cave-adapted Crustaceans from Central Texas and Northeastern Mexico., 1973, Elliot William R. , W. Mitchell Robert
The temperature preference responses of five species of troglobite crustaceans were studied in a 15-30C gradient. Stygonectes hadenoecus, S. russelli and Asellus reddelli had no discernible temperature preferenda. Speocirolana bolivari had a weak preference for 20-30C. Cirolanides texensis had a pronounced preference for 20-30C, temperatures much warmer than that of its habitat. The lack of temperature preferenda in three species agrees with the hypothesis that imprisoned troglobites tend to lose responses to those environmental variables which are constant in caves. S. bolivari may retain its temperature selectivity because of a slow rate of cave-adaptation. It is hypothised that C. texensis is recently descended from a tropical, epigean, freshwater ancestor.

Results 1 to 15 of 45
You probably didn't submit anything to search for