MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology

Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That water quality is the physical, chemical, and biological characteristics of water [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for water storage (Keyword) returned 29 results for the whole karstbase:
Showing 1 to 15 of 29
Water Storage in the Alpine Karst, 1951, Abel Gustave

Hydrogeology of the Great Nubian Sandstone basin, Egypt, 1982, Shata A. A. ,
In Egypt, the strata of major hydrogeological interest are composed of a sandstone complex ranging from Cambrian to Upper Cretaceous in age. This sandstone complex, commonly known as the Nubian Sandstone, has a thickness varying from less than 500 m to more than 3000 m and rests directly on Precambrian basement. This simple picture is complicated by a number of major structural fault and fold axes which traverse the region in a north-easterly direction. The sandstones reach their max-imum development in the Ain Dalla basin, a downthrown structural block SW of Bahariya oasis. Basement features exercise a dominant control on the structural and sedimentological form of the sandstone complex. In spite of the structural complications, the Nubian sand-stone, underlying an extensive area of Egypt, probably con-stitutes a single hydrogeological system to the W of the Gulf of Suez. To the E, on the Sinai peninsula, a second system may exist with some connection to the main western system in the N. The main western system, which extends into Libya and Sudan, comprises a multi-layered artesian basin where huge groundwater storage reserves were accumulated, principally during the pluvials of the Quaternary. The carbonate rocks overlying the Nubian Sandstone complex display karst features locally and are recharged by upwards leakage from the underlying major aquifer. Large-scale development of the Nubian Sandstone aquifer in Egypt has been under consideration since 1960. Latest proposals for the New Valley development project involve exploitation at the annual rate of 156.2 x l06m3 at El-Kharga, 509.2 at

Les importantes mergences de Magland, dans la valle de l'Arve (Haute-Savoie) : physico-chimie et origine des eaux, 1989, Sesiano, J.
Dye tracing and physico-chemical analysis of two important springs in the Arve valley (Haute-Savoie, France) - Several dye-tracing experiments and physico-chemical analysis of water samples taken during 18 months were performed at two important springs in the Arve valley (Haute-Savoie, France). The water origin and the type of flow, very different from one to the other, are thus explained. The first spring collects water from both a bare high-altitude karst and a forested karst at a lower elevation. It gathers also waters from the lakes Flaine and Vernant. The drainage is superficial, with strong but short water outbursts; water storage is nevertheless important, the spring being perennial. The physico-chemistry of its water is similar to that of springs located in the Northern Prealps. The second spring is very different. The physico-chemistry variations being much smoother. It comes from a basin filled with fluvio-glacial deposits and located under the Gers Lake. Its physico-chemical properties are rather similar to those of typical springs located in Provence and Southern Provence.

ISOTOPE HYDROLOGICAL STUDY OF MEAN TRANSIT TIMES IN AN ALPINE BASIN (WIMBACHTAL, GERMANY), 1992, Maloszewski P. , Rauert W. , Trimborn P. , Herrmann A. , Rau R. ,
Measurements of tritium and O-18 concentrations in precipitation and runoff were used to provide further insight into the groundwater storage properties of the Wimbachtal Valley, a catchment area of 33.4 km2, extending between 636 and 2713 m a.s.l. in the Berchtesgaden Alps. The catchment includes three aquifer types: a dominant porous aquifer; a fractured dolomite; a karstic limestone aquifer. Employing a simple hydrological model, information about mean transit times of environmental tracers is derived for the groundwater runoff component and several karst springs from the application of the exponential and dispersion flow models to the isotopic input and output data. The mean transit times calculated from a dispersion model with transit times of 4.1 years for O-18 and 4.2 years for tritium, which agree well, allow calculation of total (mobile stagnant) groundwater storage volume, which is equivalent to 6.6 m of water depth. Direct runoff appears negligible as in many other cases

BURIAL AND INFILLING OF A KARST IN PAPUA-NEW-GUINEA BY ROAD EROSION SEDIMENTS, 1993, James J. M. ,
The anthropogenic impact on karst in Papua New Guinea is briefly introduced and a specific case is presented detailing the effect of road erosion sediments on a small karst. The karst is in the perennially humid tropics and covered with primary rain forest. The road was placed high above the karst on steep friable rock and traverses several of its catchments. The changes to and the rate of burial of parts of the karst and the infilling of the caves are described. The karst drainage has altered, and there is increased water storage. The sediment build-up ceased in less than a year due to vegetation and stabilization of the road embankments. It is concluded that any construction within a catchment leading to a karst should be assessed as to its impact on the karst

Stable isotopic variation of storm discharge from a perennial karst spring, Indiana, 1996, Lakey B. , Krothe N. C. ,
Oxygen and deuterium isotopes and major-ion chemistry of water from a large karst spring were used in an attempt to decipher water recharge, transmission, and storage characteristics of a karst aquifer system. Ionic concentrations and isotopic data indicated that the bulk of discharge during peak flow was derived from groundwater storage. Isotopic hydrograph separation of storm flow revealed that maximum rainwater contribution to discharge was 18 to 24 hours after peak flow and rainwater contributed 20 to 25% of spring discharge over the monitoring periods. Water released from phreatic and vadose conduit storage may have contributed to discharge with the onset of storm flow, while water from soil moisture and epikarst storage may have arrived during initial discharge recession

Variation of karstic permeability between unconfined and confined aquifers, Grand Canyon region, Arizona, 1999, Huntoon Pw. .
Most of the ground water in the Grand Canyon region circulates to springs in the canyon through the thick, deeply buried, karstified Cambrian through Mississippian carbonate sectionThese rocks are collectively called the lower Paleozoic carbonates and comprise the Redwall-Muav aquifer where saturatedThe morphologies of the caves are primarily a function of whether the carbonates are unconfined or confined, a distinction that has broad significance for groundwater exploration and which appears to be generally transferable to other carbonate regionsCaves in unconfined high-gradient environments tend to be highly localized, partially saturated, simple tubes, whereas those in confined low-gradient settings are saturated 2- or even 3-dimensional mazesThe highly heterogeneous distribution of the unconfined conduits makes for difficult drilling targets, whereas the more ubiquitously distributed confined mazes are far easier to targetThe distinctions between the storage characteristics within the two classes is probably even more importantThere is minimal groundwater storage in the unconfined systems because they are well drainedIn contrast, the saturated mazes exhibit maximal storageConsequently, system responses to major storm recharge events in the unconfined systems is often dominated by flow-through rather than the pulse-through hydraulics as found in the confined systemsSpring discharges from the unconfined systems tends to be both flashy and highly variable from season to season, but total dissolved solids are smallIn contrast, the pulse-through hydraulics in the artesian systems causes spring discharge responses to be highly moderated and, in the larger basins, remarkably steadyBoth total dissolved solids and temperatures in the waters from the confined aquifers tend to be elevated because most of the water is derived from storageKarst permeability is created by the flow system, consequently predicting where the permeability is best developed in a carbonate section involves determining how circulation should be ideally organized through an examination of the geometry of the flow systemThe areas where flow concentrates are the areas where karstification will maximize, provided enough time has elapsed to allow dissolution to adjust to the imposed boundary conditionsThe rate of adjustment in the Grand Canyon region appears to be related to the degree of saturationThe artesian systems are far better adjusted to hydraulic gradients than the unconfined systems, a finding that probably implies that there is greater contact between the solvent and rock in the saturated confined systems

Variability of karstic permeability between unconfined and confined aquifers, Grand Canyon region, Arizona, 2000, Huntoon P. W. ,
Most of the ground water in the Grand Canyon region circulates to springs in the canyon through the thick, deeply buried, karstified Cambrian-Mississippian carbonate section. These rocks are collectively called the lower Paleozoic carbonates and comprise the Redwall-Muav aquifer where saturated. The morphologies of the caves in the Grand Canyon are primarily a function of whether the carbonates are unconfined or confined, a distinction that has broad significance for ground-water exploration and which appears to be generally transferable to other carbonate regions. Caves in unconfined high-gradient environments tend to be highly localized, partially saturated, simple tubes, whereas those in confined low-gradient settings are saturated 2- or even 3-dimensional mazes. The highly heterogeneous, widely spaced conduits in the unconfined settings make for difficult drilling targets, whereas the more ubiquitously distributed mazes in confined settings are far easier to target. The distinctions between the storage characteristics within the two classes are more important. There is minimal ground-water storage in the unconfined systems because cave passages tend to be more widely spaced and are partially drained. In contrast, there is maximum storage in the saturated mazes in the confined systems. Consequently, system responses to major storm recharge events in the unconfined systems are characterized by flow-through hydraulics. Spring discharge from the unconfined systems tends to be both flashy and highly variable from season to season, but total dissolved solids are small. In contrast, the pulse-through hydraulics in the artesian systems cause fluctuations in spring discharge to be highly moderated and, in the larger basins, remarkably steady. Both total dissolved solids and temperatures in the waters from the confined aquifers tend to be elevated because most of the water is derived from storage. The large artesian systems that drain to the Grand Canyon derive water from areally extensive, deep basins where the water has been geothermally heated somewhat above mean ambient air temperatures. Karst permeability is created by the flow system, so dissolution permeability develops most rapidly in those volumes of carbonate aquifers where flow concentrates. Predicting where the permeability should be best developed in a carbonate section involves determining where flow has been concentrated in the geologic past by examining the geometry and hydraulic boundary conditions of the flow field. Karstification can be expected to maximize in those locations provided enough geologic time has elapsed to allow dissolution to adjust to the imposed boundary conditions. The rate of adjustment in the Grand Canyon region appears to be related to the degree of saturation. The artesian systems are far better adjusted to hydraulic gradients than the unconfined systems, a finding that probably implies that there is greater contact between the solvent and rock in the saturated systems. These findings are not arcane distinctions. Rather, successful exploration for ground water and management of the resource is materially improved by recognition of the differences between the types of karst present. For example, the unsaturated conduit karsts in the uplifts make for highly localized, high risk drilling targets and involve aquifers with very limited storage. The conduits have highly variable flow rates, but they carry good quality water largely derived from seasonal flow-through from the surface areas drained. In contrast, the saturated basin karsts, with more ubiquitous dissolutional permeability enhancement, provide areally extensive low risk drilling targets with large ground-water storage. The ground water in these settings is generally of lesser quality because it is derived mostly from long term storage

Mechanisms of water storage and flow in the unsaturated zone of the Chalk aquifer., 2000, Price M. , Low R. G. , Mccann C.

The formation of epikarst and its role in vadose speleogenesis, 2000, Klimchouk A.
The epikarstic zone differs structurally from the underlying bulk rocks mass, reflecting the higher degree of fissuring and diffuse karstification due to unloading, weathering and dissolution processes that encompass this uppermost layer of exposed rocks. An initial distinction in the permeability between the epikarstic zone and the bulk rock mass below is caused largely by non-dissolutional processes. Contrasts in hydraulic conductivity allows some groundwater storage in the epikarstic zone and flow concentration in its base. Effective vertical leakage paths from the epikarstic zone (major tectonic fissures) commonly need no speleogenic initiation, as they are wide enough to support undersaturated flow through them. Shafts fed by epikarstic recharge represent headwaters of conduit drainage system developed in the deeper parts of a massif. It appears that a large majority of single shafts, several tens of meters deep (the most common feature among explored vertical caves), belong to this type of epikarst-fed shafts. Opening of these shafts to the surface through collapse and subsidence, with subsequent edge smoothing, is probably the main mechanism of doline formation in exposed karsts, rather than gradual preferential lowering of the surface. Therefore, focused karst landforms reflect, through specific mechanisms of epikarst morphogenesis, the permeability pattern of the upper part of the vadose zone.

Hydrogeological characteristics of a karst mountainous catchment in the northwest of Vietnam, 2001, Tam V. T. , Vu T. M. N. , Batelaan O. ,
This paper presents a preliminary assessment of the hydrogeological characteristics of a karst mountainous catchment, the Suoi Muoi River catchment, in the northwest of Vietnam. The catchment is located at 600 -700 in a.s.l. and covers an area of 284 kin. Exposed limestone occupies 32% of the total catchment area. Various types of assessments have been carried out, including geological and hydrogeological. field surveys, cave surveys, dye-tracer tests, meteorological and surface water monitoring. Geological studies and cave surveys have identified the most important active cave/conduit systems within the catchment. Although these data are essential, they are insufficient to make a comprehensive appraisal of the hydrologic nature of the catchment under interest. An attempt was made to calculate a global water balance of the catchment, based on short-term (15 months) meteorological and streamflow records. The results show that, despite the existence of a number of substantial cavern conduit systems, the groundwater system of the catchment is governed by the fracture/fissure matrix. The cavern conduit systems only collect groundwater from the adjacent fracture matrix and/or connect topographically isolated surface watercourses. The groundwater storage of the cavern conduit systems appears to be regionally insignificant in comparison with the governed fracture matrix groundwater system

Failure of an industrial wastewater lagoon in a karst terrain and remedial action, 2001, Memon B. A. , Azmeh M. M. ,
Failure of a wastewater lagoon, caused by development of a sinkhole underneath the lagoon at a site in the Lehigh River Valley near Allentown, Pennsylvania, allowed waste water to enter into the underlying karstified carbonate aquifer, a source of public water supply in the area. Identification of the contamination and development of an appropriate site-specific remediation plan required understanding of site geology, stratigraphy, hydrogeologic setting and aquifer characteristics. Information on site geology and hydrogeology, including aquifer geometry and matrix, occurrence and flow of groundwater were collected and evaluated. Core holes were drilled, geophysically logged, and correlated to define stratigraphy and structural controls to the movement of groundwater and pollutants. Monitoring wells were installed. Water level data collected on a continuous basis were used to determine the direction and gradient and also correlated with climatic changes to define amplitude of fluctuations of groundwater. Correlation of lithologic logs and interpretation of geophysical logs identified five water-producing zones separated by semi-confined layers within the carbonate aquifer. Water samples were collected from different water producing zones and analyzed to delineate vertical and horizontal extent of contamination. Pentaerythritol (PE), which was directly linked with the failure of lagoon, was identified as a pollutant in groundwater. PE was found to be present in the lower water-producing zones. Based on a geologic and hydrogeologic model of the site and understanding of flow regime and presence of PE in the lower water producing zones, a remedial plan (a pump-and-treat system) was developed and implemented to remediate the aquifer. This remedial action has reduced the PE level in groundwater and also created a pressure trough as a barrier to off-site migration

Analysis of the maximum discharge of karst springs, 2001, Bonacci O,
Analyses are presented of the conditions that limit the discharge of some karst springs. The large number of springs studied show that, under conditions of extremely intense precipitation, a maximum value exists for the discharge of the main springs in a catchment, independent of catchment size and the amount of precipitation. Outflow modelling of karst-spring discharge is not easily generalized and schematized due to numerous specific characteristics of karst-flow systems. A detailed examination of the published data on four karst springs identified the possible reasons for the limitation on the maximum flow rate: (1) limited size of the karst conduit; (2) pressure flow; (3) intercatchment overflow; (4) overflow from the main spring-flow system to intermittent springs within the same catchment; (5) water storage in the zone above the karst aquifer or epikarstic zone of the catchment; and (6) factors such as climate, soil and vegetation cover, and altitude and geology of the catchment area. The phenomenon of limited maximum-discharge capacity of karst springs is not included in rainfall-runoff process modelling, which is probably one of the main reasons for the present poor quality of karst hydrological modelling

The role of accurate recharge estimation in the hydrodynamic analysis of karst aquifers, 2001, Petrič, Metka

For the karst aquifer in the background of the Vipava springs in south-western Slovenia the first the model of the recharge estimation was set on the base of the method of soil moisture balance. Additional to precipitation, the influences of the interception on vegetation cover, snow and snowmelt, evapotranspiration, water storage in soil, rapid recharge and secondary infiltration were also considered in this model. It was calibrated by comparison with the discharges of the Vipava springs and then the daily values of recharge were estimated. To test the role of such accurate estimation of the recharge in further hydrodynamic analysis of karst aquifers, the black-box method was used. As the input signal in the supposed linear system the measured precipitation was first adopted, and then the estimated recharge values. It was demonstrated by comparison of results that the introduction of the recharge function significantly improves the model. In this way the important influence of the processes in the air, vegetation and soil on the amount and the time distribution of the recharge, and through this also on the hydrodynamic functioning of karst aquifers, was proved.


The environmental hazards of locating wastewater impoundments in karst terrain, 2002, Memon B. A. , Azmeh M. M. , Pitts M. W. ,
A wastewater storage lagoon failed due to the development of a sinkhole at a site in the Lehigh River valley in Allentown, Pennsylvania (PA). The polluted wastewater from the lagoon entered into the underlying aquifer and moved within a narrow pathway controlled by cracks, fissures, and solution channels within the karstified Allentown Formation of the Cambrian Period. The Allentown Formation serves as the principal aquifer for the public water supply of the area. To develop appropriate remedial measures, a thorough understanding of the geologic setting was required. Therefore, a geologic and hydrogeologic characterization of the area was completed, aerial photography and satellite imagery interpretations were performed, stratigraphic core holes were drilled and geophysically logged, and the data correlated to define structural control and movement of ground water and pollutants. A number of wells were drilled and constructed, and water levels were monitored on a continuous basis to correlate with climatic changes and determine the direction of flow. Water samples were collected periodically and analyzed to delineate the vertical and lateral extent of migration of pollutants. Five saturated (water-bearing) zones were identified within the bedrock based on the analysis of cores and interpretation of geophysical logs. Ground water in the lower zones is polluted; the concentration of pollution increases with depth. Monitoring stations were established in the creek, south of the site, to measure flow rate several times during different seasons, and at different reaches, to determine the losing and gaining sections of the creek. Pumping tests were conducted to determine hydraulic characteristics of the aquifer. Based on the hydrogeologic model of the karstified aquifer, flow regime and structural control, a plan of action was defined and initiated to remediate the aquifer. The ground water is being remediated using a pump and treat methodology. The cleanup effort is continuous and the pollutant level is fluctuating with an overall-declining trend. The application of this technology has also created a pressure trough, thereby controlling off the site migration of pollutants. (C) 2002 Published by Elsevier Science B.V

Results 1 to 15 of 29
You probably didn't submit anything to search for