MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology

Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 5
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That finite element method is a numerical method used to approximate the solution of partial differential equations.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 7
What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for reef (Keyword) returned 102 results for the whole karstbase:
Showing 16 to 30 of 102
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Buigues D, Gachon A, Guille G,
From a geographical point of view, the atoll of Mururoa belongs to the Tuamotu archipelago. In its largest dimension Mururoa (28 x 10 km) is oriented N080-degrees-E, a direction which is different from that of the other atolls of the Tuamotu, generally oriented parallel to the Pacific plate motion, N130-degrees-E. The atoll of Mururoa is built on a submarine plateau of 130 km long and 30 km wide. The western side of this plateau is 90 km long and N080-degrees-E oriented, the eastern one 40 km long and N095-degrees-E oriented. Three deep main structures of the atoll are revealed by strong aeromagnetic anomalies elongated and oriented once more N080-degrees-E. They represent ancient riftzones, similar to the present time Hawaiian ones. The most important of them, situated at southern end of the atoll, is the prolongation of the eastern plateau. The principal petrographic facies have been defined from the numerous drill holes bored in the upper 1,100 m. From the base to the top are represented volcanic deposits, a volcano-sedimentary serie of both carbonate and volcanic origin and finally reefal carbonates (limestones and dolomites). The volcanic facies represent successively submarine, transitional and aerial volcanic activity. They are commonly affected by early stage of hydrothermalism, due to lava-sea-water chemical interaction, and are frequently supported by differentiated dykes, occasionally interrupted by reefal limestones. The main geometrical distribution of the facies through the atoll and the radiochronology lead to the following model of formation : during early stages of the atoll building two main separate edifices emerged before joining and forming a single volcano. This double structure was similar to the present time morphology of Tahiti. The volcanic activity ceased 10.6 Ma ago, an age which perfectly suits a hot spot origin, at present located to the south-east of Pitcairn island

Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Aubert O, Droxler Aw,
Analyses and interpretation of an industrial multi-channel seismic grid, a 2.3 km-deep industrial well (NMA-1) and two ODP (Sites 715 and 716), have generated new insights into the evolution of the Maldives carbonate system, Equatorial Indian Ocean. The present physiography of the Maldives Archipelago, a double chain of atolls delineating an internal basin, corresponds only to the latest phase of a long and dynamic evolution, far more complex than the simple vertical build-up of reef caps on top of thermally subsiding volcanic edifices. Through the Cenozoic evolution of the Maldives carbonate system, distinct phases of vertical growth (aggradation), exposure, regional or local drowning, and recovery of the shallow banks by lateral growth (progradation) have been recognized. The volcanic basement underlying the Maldives Archipelago is interpreted to be part of a volcanic ridge generated by the northern drift of the Indian plate on top of the hotspot of the island of Reunion. The volcanic basement recovered at well NMA-1 and ODP Site 715 has been radiometrically dated as 57.2 1.8 Ma (late Paleocene) by 40Ar-39Ar. Seismic and magnetic data indicate that this volcanic basement has been affected by a series of NNE-SSW trending subvertical faults, possibly associated with an early Eocene strike-slip motion along an old transform zone. The structural topography of the volcanic basement apprears to have dictated the initial geometry of the Eocene and early Oligocene Maldives carbonate system. Biostratigraphic analyses of samples, recovered by drilling in Site 715 and exploration well NMA-1, show that the Maldives shallow carbonate system was initiated during the early Eocene on top of what were originally subaerial volcanic edifices. The Eocene shallow carbonate sequence, directly overlying the volcanic basement at NMA-1, is dolomitized and remains neritic in nature, suggesting low subsidence rates until the early Oligocene. During this first phase of the Maldives carbonate system evolution, shallow carbonate facies aggraded on top of basement highs and thick deep-water periplatform sediments were deposited in some central seaways, precursors of the current wider internal basins. In the middle Oligocene, a plate reorganization of the equatorial Indian Ocean resulted in the segmentation of the hotspot trace and the spreading of the Maldives away from the transform zone. This plate reorganization resulted in increasing subsidence rates at NMA-1, interpreted to be associated with thermal cooling of the volcanic basement underlying the Maldives carbonate system. This middle Oligocene event also coincides with a regional irregular topographic surface, considered to represent a karst surface produced by a major low-stand. Deep-water carbonate facies, as seen in cuttings from NMA-1, overlie the shallow-water facies beneath the karst surface which can, therefore, be interpreted as a drowning unconformity. In the late Oligocene, following this regional deepening event, one single central basin developed, wider than its Eocene counterparts, and the current intraplatform basin was established. Since the early to middle Miocene, the shallow carbonate facies underwent a stage of local recovery by progradation of neritic environments towards the central basin. The simultaneous onset in the early middle Miocene of the monsoonal wind regime may explain the development of bidirectional slope progradations in the Maldives. During the late Miocene and the early Pliocene, several carbonate banks were locally drowned, whereas others (i.e. Male atoll) display well-developed lateral growth through margin progradations during the same interval. Differential carbonate productivity among the atolls could explain these diverse bank responses. High-frequency glacialeustatic sea-level fluctuations in the late Pliocene and Pleistocene resulted in periodic intervals of bank exposure and flooding, and developed the present-day physiography of atolls, with numerous faros along their rims and within their lagoons

Niveaux marins, chronologie isotopique et karstification en rpublique dominicaine, 1993,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Diaz_del_olmo F. , Camara_artigas R.
The study of marine levels and the karstification of coral reefs on the Santo Domingo coast emphasizes qua-ternary dynamics linked to climatic variations and eustatic oscillations. The evolution proposed here includes the last 400 000 years (U/Th limit) and shows the importance of stages 1, 5 and 7 (interglacial stages) in the layout of coral reefs. As far as karstifiction is concerned, the differences observed between ancient and more recent times can be accounted for by a tendancy to the drying out of the intertropical morphoclimatic system.

Silicification of evaporites in Permian (Guadalupian) back-reef carbonates of the Delaware Basin, west Texas and New Mexico, 1993,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Ulmerscholle D. S. , Scholle A. , Brady P. V.

Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
White S. ,
Most studies of karst landscapes and their processes have been concerned with consolidated, often well-jointed limestones. There are particular problems involved in the study of karst procesess in softer, less-compact limestones such as chalk, coral reefs, and aeolian calcarenite. Previous studies in aeolian calcarenite indicated these problems and a scheme was developed of speleogenesis in aeolian calcarenite. A study of karst processes in aeolian calcarenite at Bats Ridge in western Victoria has developed this scheme further. The karst features and processes at Bats Ridge are an integral part of the landscape of a mid-Pleistocene calcarenite dune system. The resolution of problems of the rapid subaerial speleogenesis in the area is achieved by the synthesis of the known karst features of the ridge and the geology and geomorphology of the area. Karst development on this aeolianite ridge depends on lithological conditions as well as the availability of aggressive water capable of solution. The diagenesis of the calcarenite is occurring now and must have been occurring by the mid-Pleistocene. This simultaneous lithification of the carbonate dunes into aeolian calcarenite rock and the development of solutional karst features in the dunes is the characteristic feature of the speleogenesis in this area. It is the formation of a hardened kankar layer (cap rock) in the dunes of sufficient compressive and tensile strength to support cavities, which is the result of these interrelated factors, that has strongly determined the formation of the karst features

Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Jones B. , Hunter I. G. ,
The Cayman Unconformity, which separates the Pedro Castle Formation (Pliocene) from the underlying Cayman Formation (Miocene), is a sequence boundary that developed during the Messinian, when sea level was at a lowstand due to glaciation in the Southern Hemisphere. By the end of the Messinian, Grand Cayman was an atoll-like island that had an elevated peripheral rim that was up to 41 m above the central depression. The Cayman Formation contains paleocaves and paleosinkholes that were linked to the Cayman Unconformity. The topography on the Cayman Unconformity is attributed to erosional processes, because (1) there is no evidence of carbonates that formed by constructional processes (i.e., reefs, dunes) in the elevated peripheral rim, and (2) there is ample evidence of dissolutional features in the Cayman Formation. The topography developed on the interior of Grand Cayman during the Messinian was uneven. A deep, basin-like depression, with its base as much as 50 m below the peripheral rim, formed on the western part of the island. By comparison, the floor of the depression on the eastern part of the island was 20-30 m higher. The difference in the topography, which is a reflection of the amount of bedrock dissolution, suggests that the effective rainfall was highest over the western part of the island. The relief on the Cayman Unconformity and associated structures shows that base level during the Messinian karst development was at least 41 m below present-day sea level. This is also provides an estimate of the Messinian lowstand position because the base level in oceanic karst settings is usually controlled by sea level

Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Satterley A. K. , Marshall J. D. , Fairchild I. J. ,
The Wilde Kirche reef complex (Early-Late Rhaetian) grew as an isolated carbonate structure within the shallow Kossen Basin. At the Triassic/Jurassic boundary a single brief(c. 10-50 ka) period of subaerial exposure occurred. The preserved karst profile (70 m thick) displays a vadose zone, enhanced dissolution at a possible palaeo-watertable (5-15m below the exposure surface), and a freshwater phreatic zone. Karst porosity was predominantly biomouldic. primary cavities and biomoulds were enlarged and interconnected in the freshwater phreatic zone; cavity networks developed preferentially in patch reef facies. Resubmegence of the reef complex allowed minor modification of the palaeokarst surface by sea floor dissolution and Fe-Mn crust deposition on a sediment-starved passive margin. Fibrous calcite (FC), radiaxial fibrous calcite (RFC) and fascicular optic calcite (FOC) cements preserved as low Mg calcite (LMC) are abundant in primary and karst dissolution cavities. FC cement is restricted to primary porosity, particularly as a synsedimentary cement at the windward reef margin. FC, RFC and FOC contain microdolomite inclusions and show patchy non-/bright cathodoluminescence. delta(18)O values ofnon-luminescent portions (interpreted as near original) are -1.16 to -1.82 parts per thousand (close to the inferred delta(18)O of calcite precipitated from Late Triassic sea water). delta(13)C values are constant ( to .2 parts per thousand). These observations suggest FC, RFC and FOC were originally marine high Mg calcite (HMC) precipitates, and that the bulk of porosity occlusion occurred not in the karst environment but in the marine environment during and after marine transgression. The HMC to LMC transition may have occurred in contact with meteoric water only in the case of FC cement. The most altered (brightly luminescent) portions of RFC/FOC cements yield delta(18)O = -2.44 to -5.8 parts per thousand, suggesting HMC to LMC alteration at up to 34 degrees C, in the shallow burial environment at depths of 180-250 m. Abundant equant cements with delta(18)O = -4.1 to -7.1 parts per thousand show crisp, uniform or zoned dull luminescence. They are interpreted as unaltered cements precipitated at 33-36 degrees C at 200-290 m burial depth, from marine-derived fluids under a slightly enhanced geothermal gradient. Fluids carrying the equant cements may have induced the HMC to LMC transition in the fibrous cements

Ring of cenotes (sinkholes), Northwest Yucatan, Mexico; its hydrogeologic characteristics and possible association with the Chicxulub impact crater, 1995,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Perry Eugene, Marin Luis E. , Mcclain Jana, Velazquez Guadalupe,
A 180-km-diameter semicircular band of abundant karst sinkholes (Ring of Cenotes) in Northwest Yucatan, Mexico, coincides approximately with a concentric ring of the buried Chicxulub structure, a circular feature manifested in Cretaceous and older rocks, that has been identified as the product of the impact of a bolide. The ring, expressed in Tertiary rocks, marks a zone of high permeability as shown by (1) the sinkholes themselves, (2) breaks in the coastal dune system and high density of springs where the ring intersects the coast, and (3) water-level transects characterized by a decline in water level toward the ring. Any direct relation that exists between the Ring of Cenotes and the Chicxulub structure bears on regional hydrogeology. If the layer or zone responsible for the ring is deeply buried, it may act as a barrier to the movement of ground water across the main flow direction. Shallower zones of horizontal permeability could result in less complete diversion of ground water. Through its influence on Yucatan aquifer characteristics, the ring may provide a link between modern environmental problems and astrogeology. Possible origins for the Ring of Cenotes are (1) faulting, perhaps reactivated by post-Eocene-mid-Miocene basin loading, (2) permeability in a buried reef complex developed in the shallow Paleocene sea around the crater rim, or (3) breccia collapse occasioned by consolidation or by solution of evaporite components. If the ring developed on ancient faults, it may outline hydrothermal systems and mineral deposits produced during Paleocene cooling of the Chicxulub melt sheet

High-resolution temporal record of Holocene ground-water chemistry; tracing links between climate and hydrology, 1996,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Banner Jl, Musgrove M, Asmerom Y, Edwards Rl, Hoff Ja,
Strontium isotope analysis of precisely dated calcite growth layers in Holocene speleothems from Barbados, West Indies, reveals high-resolution temporal variations in ground-water composition and may provide a new approach to documenting the links between climate variability and fluctuations in the hydrologic cycle such as recharge rates and flow paths. The speleothems grew in a cave that developed in a fresh-water aquifer in uplifted Pleistocene reef limestones. Three periods of ground-water Sr isotope evolution are observed: 87 Sr/ 86 Sr values decreased from 6 to 4 ka, increased from 4 to 1 ka, and decreased again after 1 ka. The Sr isotope oscillations appear to record periodic variations in the relative Sr fluxes to ground water from exchangeable soil sites vs. carbonate mineral reactions, as reflected in 87 Sr/ 86 Sr values of modern Barbados ground waters. A hydrologic model that explains changes in ground-water flow routes in karst aquifers as a function of amount of rainfall recharge can account for the speleothem Sr isotope record. Independent Holocene climate records that indicate a major period of aridity at around 1.3-1.1 ka in the American tropics correspond with periodic variations in rainfall on Barbados that are predicted by this hydrologic model

Digital shaded relief image of a carbonate platform (northern Great Bahama Bank); scenery seen and unseen, 1996,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Boss Sk,
A mosaic image of the northern Great Bahama Bank was created from separate gray-scale Landsat images using photo-editing and image analysis software that is commercially available for desktop computers. Measurements of pixel gray levels (relative scale from 0 to 255 referred to as digital number, DN) on the mosaic image were compared to bank-top bathymetry (determined from a network of single-channel, high-resolution seismic profiles), bottom type (coarse sand, sandy mud, barren rock, or reef determined from seismic profiles and diver observations), and vegetative cover (presence and/or absence and relative density of the marine angiosperm Thalassia testudinum determined from diver observations). Results of these analyses indicate that bank-top bathymetry is a primary control on observed pixel DN, bottom type is a secondary control on pixel DN, and vegetative cover is a tertiary influence on pixel DN. Consequently, processing of the gray-scale Landsat mosaic with a directional gradient edge-detection filter generated a physiographic shaded relief image resembling bank-top bathymetric patterns related to submerged physiographic features across the platform. The visibility of submerged karst landforms, Pleistocene eolianite ridges, islands, and possible paleo-drainage patterns created during sea-level lowstands is significantly enhanced on processed images relative to the original mosaic. Bank-margin ooid shoals, platform interior sand bodies, reef edifices, and bidirectional sand waves are features resulting from Holocene carbonate deposition that are also more clearly visible on the new physiographic images. Combined with observational data (single-channel, high-resolution seismic profiles, bottom observations by SCUBA divers, sediment and rock cores) across the northern Great Bahama Bank, these physiographic images facilitate comprehension of areal relations among antecedent platform topography, physical processes, and ensuing depositional patterns during sea-level rise

Formation des rseaux karstiques et creusement des valles : lexemple du Larzac mridional, Hrault, France, 1997,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Camus, Hubert
The Causses and mediterranean Garrigues present a long continental evolution from late Cretaceous. The karstic network analysis and the dynamic study give geomorphological indicators to reconstruct the paleogeography of this area when the geological indicators are not present. The paleoclimatic action and the tectonic movements make the actual landscape melting a lot of ages and genesis different elements. The endokarst preserves sedimentological and paleoclimatic witnesses and also hollowing shapes that traduce the successive steps of the paleogeographic evolution. The network's levels of the South Larzac are connected with the landscape karstic forms : poljes, canyons, peripheric valleys. The reef limestone of the Seranne and the dolomite of the Monts de St-Guilhem explain this good conservation of the endokarst and of the landscapes.

The Lower Triassic Montney Formation, west-central Alberta, 1997,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Davies Gr, Moslow Tf, Sherwin Md,
The Lower Triassic Montney Formation was deposited in a west-facing, arcuate extensional basin, designated the Peace River Basin, on the northwestern margin of the Supercontinent Pangea, centred at about 30 degrees N paleolatitude. At least seasonally arid climatic conditions, dominance of northeast trade winds, minimum fluvial influx, offshore coastal upwelling, and north to south longshore sediment transport affected Montney sedimentation. Paleostructure, particularly highs over underlying Upper Devonian Leduc reefs and lows associated with graben trends in the Peace River area, strongly influenced Montney depositional and downslope mass-wasting processes. A wide range of depositional environments in the Montney is recorded by facies ranging from mid to upper shoreface sandstones, to middle and lower shoreface HCS sandstones and coarse siltstones, to finely laminated lower shoreface sand and offshore siltstones. and to turbidites. Dolomitized coquinal facies occur at seven stratigraphic horizons in the Montney. Some coquinas are capped by karst breccias and coarse-grained aeolian deflation lag sand residues indicating subaerial exposure. The Montney has been divided into three informal members that have been dated by palynology and compared with global Early Triassic sequences. The subdivisions are: the Lower member, of Griesbachian to Dienerian age, correlated with a third-order cycle; the Coquinal Dolomite Middle member, of mixed Dienerian and Smithian ages; and the Upper member, of Smithian to Spathian age, correlative with two, shorter-duration third-order cycles. A forced regressive wedge systems tract model is adopted for deposition of the Coquinal Dolomite Middle member and for turbidites in the Valhalla-La Glace area of west-central Alberta. With this model, coquinas and turbidites accumulated during falling base level to lowstand, with a basal surface of forced regression at the base of the coquina and a sequence boundary at the top of the coquinal member. This is supported by the evidence for subaerial exposure and maximum lowstand at the top of the coquina. Very limited grain size distribution in the Montney, dominantly siltstone to very fine-grained sandstone, but often very well sorted, is interpreted to reflect an aeolian influence on sediment source and transport, High detrital feldspar and detrital dolomite in the Montney are consistent with (but not proof of) aeolian source from an arid interior, as is high detrital mica content in finer size grades. Extensive and often pervasive dolomitization, and early anhydrite cementation within the Montney, are also consistent with an arid climatic imprint. As new exploratory drilling continues to reveal the wide range of facies in the Montney, it adds to both the complexity and potential of this relatively unique formation in western Canada

Paleokarst in an Upper Devonian reef complex of the Canning Basin, Western Australia, 1997,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
George Ad, Powell Cm,

Karst Development and Speleogenesis, Isla de Mona, Puerto Rico, 1998,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Frank, E. F. , Mylroie, J. , Troester, Jo. , Alexander, Jr. , E. C. , Carew, J.
Isla de Mona consists of a raised table-top Miocene-Pliocene reef platform bounded on three sides by vertical cliffs, up to 80 m high. Hundreds of caves ring the periphery of the island and are preferentially developed in, but not limited to, the Lirio Limestone/Isla de Mona Dolomite contact. These flank margin caves originally formed at sea level and are now exposed at various levels by tectonic uplift of the island (Frank 1983; Mylroie et al. 1995b). Wall cusps, a characteristic feature of flank margin caves, are ubiquitous features. Comparisons among similar caves formed in the Bahamas and Isla de Mona reveal the same overall morphology throughout the entire range of sizes and complexities. The coincidence of the primary cave development zone with the Lirio Limestone/Isla de Mona Dolomite contact may result from syngenetic speleogenesis and dolomitization rather than preferential dissolution along a lithologic boundary. Tectonic uplift and glacioeustatic sea level fluctuations produced caves at a variety of elevations. Speleothem dissolution took place in many caves under phreatic conditions, evidence these caves were flooded after an initial period of subaerial exposure and speleothem growth. Several features around the perimeter of the island are interpreted to be caves whose roofs were removed by surficial denudation processes. Several large closed depressions and dense pit cave fields are further evidence of surficial karst features. The cliff retreat around the island perimeter since the speleogenesis of the major cave systems is small based upon the distribution of the remnant cave sections.

Geology of Isla de Mona, Puerto Rico, 1998,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Frank, E. F. , Wicks, C. , Mylroie, J. , Troester, J. , Alexander, Jr. , E. C. , Carew, J.
Isla de Mona is a carbonate island located in the Mona Passage 68 km west of Puerto Rico. The tectonically uplifted island is 12 km by 5 km, with an area of 55 km?, and forms a raised flat-topped platform or meseta. The meseta tilts gently to the south and is bounded by near vertical cliffs on all sides. These cliffs rise from 80 m above sea level on the north to 20 m above the sea on the southern coast. Along the southwestern and western side of the island a three- to six-meter-high Pleistocene fossil reef abuts the base of the cliff to form a narrow coastal plain. The meseta itself consists of two Mio-Pliocene carbonate units, the lower Isla de Mona Dolomite and the upper Lirio Limestone. Numerous karst features, including a series of flank margin caves primarily developed at the Lirio Limestone/Isla de Mona Dolomite contact, literally ring the periphery of the island.

Results 16 to 30 of 102
You probably didn't submit anything to search for