MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology

Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That curve, backwater is a water surface profile in a stream or channel above a constriction or impoundment [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for runoff (Keyword) returned 113 results for the whole karstbase:
Showing 16 to 30 of 113
Measurements of tritium and O-18 concentrations in precipitation and runoff were used to provide further insight into the groundwater storage properties of the Wimbachtal Valley, a catchment area of 33.4 km2, extending between 636 and 2713 m a.s.l. in the Berchtesgaden Alps. The catchment includes three aquifer types: a dominant porous aquifer; a fractured dolomite; a karstic limestone aquifer. Employing a simple hydrological model, information about mean transit times of environmental tracers is derived for the groundwater runoff component and several karst springs from the application of the exponential and dispersion flow models to the isotopic input and output data. The mean transit times calculated from a dispersion model with transit times of 4.1 years for O-18 and 4.2 years for tritium, which agree well, allow calculation of total (mobile stagnant) groundwater storage volume, which is equivalent to 6.6 m of water depth. Direct runoff appears negligible as in many other cases

Caves, fossil mouldic cavities, sinkholes and solution-widened joints are common in the Cayman and Pedro Castle members of the Bluff Formation (Oligocene Miocene) on Grand Cayman and Cayman Brac because they have been subjected to repeated periods of karst development over the last 30 million years. Many voids contain a diverse array of sediments and/or precipitates derived from marine or terrestrial environs, mineral aerosols, and groundwater. Exogenic sediment was transported to the cavities by oceanic storm waves, transgressive seas, runoff following tropical rain storms and/or in groundwater. At least three periods of deposition were responsible for the occlusion of voids in the Cayman and Pedro Castle members. Voids in the Cayman Member were initially filled or partly filled during the Late Oligocene and Early Miocene. This was terminated with the deposition of the Pedro Castle Member in the Middle Miocene. Subsequent exposure led to further karst development and void-filling sedimentation in both the Cayman and Pedro Castle members. Speleothems are notably absent. The void-filling deposits formed during these two periods, which were predominantly marine in origin, were pervasively dolomitized along with the host rock 2 5 million years ago. The third period of void-filling deposition. after dolomitization of the Bluff Formation, produced limestone, various types of breccia, terra rossa, speleothemic calcite and terrestrial oncoids. Most of these deposits formed since the Sangamon highstand 125 000 years ago. Voids in the present day karst are commonly filled or partly filled with unconsolidated sediments. Study of the Bluff Formation of Grand Cayman and Cayman Brac shows that karst terrains on isolated oceanic islands are characterized by complex successions of void-filling deposits that include speleothems and a variety of sediment types. The heterogenetic nature of these void-filling deposits is related to changes in sea level and climatic conditions through time

Analyses of 441 water samples from 15 sample sites, mainly springs and sinking creeks in the southcentral Kentucky karst, were used to determine hardness, P(CO2), and state of saturation with respect to calcite and dolomite. Most of the waters are undersaturated with respect to calcite and more undersaturated with respect to dolomite, in agreement with recent kinetic models. Time series data revealed chemical fluctuations on both weekly and seasonal time scales. Much of the short-term variation and some of the seasonal variation in the hardness and saturation index parameters can be accounted for by dilution effects from storm and seasonal runoff. Seasonal cycles in CO2 partial pressure arise from a dependence of soil CO2 on temperature and the growing season. Waters from different locations in the aquifer system are chemically distinct and fit into the concept of a hydrochemical facies

Upper Sinking Cove, dissecting the eastern escarpment of the Cumberland Plateau, is characterized by a multiple aquifer, predominantly vadose hydrologic system with minor surface components. There is a central trunk channel along the axis of the cove and a network of independent tributaries. Aquitards within the limestones, particularly Hartselle Formation shales, have influenced both cave and surface landform development by perching ground waters and slowing the vertical growth of closed depressions. Long-term solutional denudation in the portion of the cove underlain by limestones (40 per cent) is an estimated 56 mm per 1000 years, suggesting that karst development began 15-16 million years ago. Despite lower soil CO2 and spring water hardness, 61 per cent of annual denudation occurs in the six winter months when 76 per cent of yearly runoff occurs. Landform development in Upper Sinking Cove appears to have begun as stream erosion carved a valley first in the sandstone caprock of the escarpment and later in the underlying Pennington Formation limestones containing numerous shale layers which promoted surface stream flow. Eventually stream erosion exposed the massive Bangor limestones which allowed deep ground water flow. Surface streams were pirated underground with the eventual formation of the chain of three closed depressions which constitute Upper Sinking Cove

ROADWAY DESIGN IN KARST, 1993, Fischer Ja, Fischer Jj, Greene Rw,
To minimize costs in conventional roadway design, as much low or valley areas as possible are utilized. In many areas of the eastern United States, these valleys are filled with carbonate rocks. Excavation is used to minimize grades-this removes protective overburden or rock cover over cavities; fill also is used to minimize grades-this can increase loads on marginally stable soil arches or rock cavity roofs. Surface water runoff is directed toward low areas-the low areas are likely zones of weakness or solutioning, thereby increasing the potential for sinkhole development and providing an opportunity for groundwater contamination, and remediation usually consists of blindly filling rock cavities, thus either channeling the still-contaminated surface flows someplace else or perhaps eliminating useful ground water recharge conduits. The authors suggest that the key to proper design, construction, and remediation for roadways planned in karst is to understand the geologic and hydrogeologic setting of the route(s) or locale, perform true geotechnical engineering design, and remediate with an understanding of the overall engineering geologic, hydrogeologic, and environmental picture

This paper deals with various methods of solving the complex problems of the hydrological transformation of rainfall into runoff in karst terrains. As an example of a typical karst catchment, the Crnojevica spring, located in deep Dinaric karst, is used to illustrate, explain and solve several hydrological problems in karst. The introduction deals with the geographical, geological and meteorological factors which conditioned a specific system of surface and underground flows, typical for karst terrains. The paper also explains some basic activities related to the identification of such a system. Special attention has been paid to the karst terrain of the Cetinje polje and its flooding, which occurred in February 1986. This flood initiated numerous intensive investigations which made it possible to define the catchment area of Crnojevica spring and the volume of the underground karst reservoir

An examination of short-term variations in water quality at a karst spring in Kentucky, 1996, Ryan M. , Meiman J. ,
Water quality at many karst springs undergoes very high amplitude but relatively brief degradation following influxes of runoff. Accurately recording transient variations requires more rigorous sampling strategies than traditional methods, A pilot study to determine the usefulness of high-frequency, flow-dependent sampling strategies, combined with coincidental quantitative dye tracer tests, was implemented in the Big Spring Ground-Water Basin in Mammoth Cave National Park, Kentucky. Data recorded following two separate runoff events showed that the concentrations of two nonpoint source pollutants, fecal coliform bacteria and suspended sediment, greatly exceeded prerunoff event values for very short periods of time, A phreatic conduit segment, calculated at 17 million liters in volume, instantaneously propagated head changes, caused by direct runoff entering the aquifer, from the ground-water inputs to Big Spring, A significant delay between the initial increases in discharge and the arrival of direct runoff, as indicated by a steady decrease in specific conductance, represented the time required to displace this volume of phreatic water, The delay showed that sampling a karst spring only during peak discharge would be an unreliable sampling method. Runoff from two different subcatchments was tagged with tracer dye and the timing of the passage of the resultant dye clouds through Big Spring were compared to water quality variations, Distinct lag times between the arrival of direct runoff at Big Spring and the bacteria and suspended sediment waveforms were shown through the concurrent quantitative tracer tests to be related to the areal distribution of land-cover type within the basin

Holocene stratigraphy of Cobweb Swamp, a Maya wetland in northern Belize, 1996, Jacob J. S. , Hallmark C. T. ,
We investigated the soils and sediments of Cobweb Swamp, adjacent to the archaeological site of Colha in northern Belize, to adumbrate landscape evolution and the impact of the ancient Maya on a tropical palustrine wetland. The Cobweb section exposes a complex and dynamically evolving landscape, with a rich interplay between natural and human forces. The Cobweb depression probably formed as a karstic doline or polje in interbedded limestone and marl of late Tertiary or Pleistocene age. During the latest Pleistocene, a terrestrial marsh covered most of the depression. Slope wash and colluviation from adjacent slopes impacted the depression during the early Holocene, possibly in response to a drier and cooler climate reported to have occurred in the region during this time. After ca. 5600 B.P., the Cobweb depression was affected by relatively rapidly rising sea levels in the area, and a brackish lagoon filled the basin. By 4800 B.P., a peat filled in the lagoon, probably because precipitation of a marl in the lagoon coupled with decreasing rates of sea-level rise enabled emergent vegetation to encroach the shallowing waters. Humans first began to affect the landscape when this peat was at the surface. Massive deforestation, resulting in increased runoff and rising water levels, is the most likely explanation for a fresh-water lagoon that again inundated the Cobweb depression between 3400 and 500 B.P. The Maya Clay was deposited on the edge of this lagoon as the result of upland erosion, almost as soon as deforestation began, but the bulk of the deposit was coincident with the sudden collapse of the Classic Maya civilization ca. 1000 B.P., suggesting that significant environmental degradation was associated with the demise of the Classic Maya. Peat began to fill the Cobweb lagoon sometime before 500 B.P., probably the result of shallower water levels from decreasing runoff resulting from reforestation after abandonment by the Maya. ------------------------------------------------------

Application and simplification of the SIMERO model for the Vozmediano Spring (Spain), 1996, Sanz E. ,
In order to explain the functioning of the Moncayo karst aquifer, the mathematical SIMERO model has been applied to the 21 years of information on the flow of the spring. The results yield the following mean values for the annual water balance: rainfall 714.2 mn; surface runoff 35.6 mm; actual evaporation 404.9 mn; recharge 273.7 mm. With the results of the recharge, the dependencies between it and the rainfall and temperature values have been calculated, obtaining a regression line. The SIMERO model has been simplified in such a way that the flow of the spring in a given month can be calculated by knowing only the precipitation and the temperature of that month and the flow of the previous month

Discussion on 'The Chalk as a karstic aquifer: evidence from a tracer test at Stanford Dingley, Berkshire, UK': Quarterly Journal of Engineering Geology, 28, S31-S38, 1996, Banks D, Davies C, Davies W,
M. Price writes: Banks et al. (1995) address the nature of the permeability of parts of the Chalk aquifer, provide useful data from a tracer test, and draw attention to the potential dangers of disposing of agricultural and road run-off to swallow holes. The paper includes a calculation of fissure conductivity and aperture from the results of the tracer test. In this it has to be emphasized that the calculations relate to Darcian flow in an equivalent smooth, plane, parallel-plate opening, not the more likely turbulent flow in a natural fissure. The true average aperture of the fissure is therefore likely to be significantly greater than that calculated (Price 1987, 1996). The situation described at Stanford Dingely is one where drainage originating from impermeable Tertiary strata flows onto the Chalk and sinks into the aquifer. The majority of active Chalk sinks appear to be of this type; the drainage sinking into them originates as run-off from other strata. Rain falling anywhere on the outcrop of the Chalk is normally able to infiltrate, so water flowing across the Chalk outcrop is almost invariably allogenic drainage or water that has infiltrated the Chalk and emerged as baseflow. Drainage to sinks is therefore a minor component of recharge to the Chalk. The tracer test undertaken into at Stanford Dingley involved introducing tracer into a known point of entry in the aquifer, and observing its arrival at a known point of emergence. Such tests almost inevitably measure the speed of groundwater movement along a ... This 250-word extract was created in the absence of an abstract

Aufeis of the Firth River basin, Northern Yukon Canada: Insights into permafrost hydrogeology and Karst, 1997, Clark Id, Lauriol B,
The 31-km(2) aufeis ice sheet of the upper Firth River holds a wealth of information on groundwater hydrology in periglacial environments. Baseflow recession calculations, corrected for aufeis storage (12% of basin discharge), indicate specific groundwater recharge rates of up to 100 mm yr(-1) (up to 50% of runoff), suggesting a significant proportion of drainage from karst. The upper Firth River aufeis is a composite aufeis, with discrete baseflow contributions from different watersheds. Since the late Pleistocene, annual growth of the aufeis has exerted a strong control on lateral erosion and the local river channel geomorphology. Two groundwater recharge processes are distinguished on the basis of carbonate geochemistry and 8(13)C: (1) Methanogenic groundwaters, with C-13(DIC) up to -3.3 parts per thousand, are recharged through saturated soils underlain by permafrost; conditions which support anaerobic consumption of dissolved organic carbon (DOC) and produce up to 700 mu g-CH4 L-1 (calculated), and (2) Karst groundwaters, with C-13-depleted DIC, recharged through unsaturated soils and circulate through fissured talik in the carbonate bedrock. Most drainage from the region shows varying contributions of these two groundwaters, although a greater contribution from the methanogenic groundwaters occurs in north-facing watersheds. The 8(13)C values far cryogenic calcite precipitates in the ice indicate that the karst groundwaters are the major contribution to aufeis growth. The combined use of 8(13)C(DIC) and geochemistry may be a useful tool to quantify methanogenesis in northern watersheds

Geochemistry and water dynamics: Application to short time-scale flood phenomena in a small Mediterranean catchment .1. Alkalis, alkali-earths and Sr isotopes, 1997, Benothman D, Luck Jm, Tournoud Mg,
We report major, trace elements and Sr isotope data for water samples taken regularly during a four-day-long September flood of a Mediterranean river, the Vene (Herault, S. France). The objective is to combine all these data into a dynamic model that describes the origin(s) and movements of waters and their loads. This river drains the runoff from a small, mainly carbonate, partly karstified watershed with Miocene and Jurassic lithologies. The watershed is also impacted by both agricultural and urban activities. Both the dissolved and the particulate loads were analyzed. Concentrations of the dissolved components show major remobilization of almost all elements during the first few hours of the flood (water treatment plants and aerosol scavenging), followed by a sharp concentration decrease. Some major species return to their previous summer values (Ca, HCO3) while others reach low 'background' levels (Na, K, Cl, SO4). Some trace elements (Rb, Sr, Cs) show similar behaviour but (Ba) appears somewhat unaffected. Trace element concentrations and ratios define two main periods (three in the suspended particulate matter). Ratios do not allow distinguishing between the three main sources for the dissolved load in the first period (Miocene, Jurassic, water treatment plants), but clearly show the Jurassic karst influence later on. The Sr-87/Sr-86 Of the suspended particulate matter is more variable and more radiogenic than in the dissolved phase. Variations in concentration ratios and Sr isotope composition in particulates indicate the large and variable contribution of Miocene silicates with some carbonate. However, there is a need for another component with [Rb]/[Sr] higher than bedrocks, internal or external to the watershed, possibly due to differential erosion. Dissolved Ca and Mg fluxes during the flood were calculated at 0.26 ton and 0.029 ton/km(2), respectively. Even though the carbonate nature of the watershed restricts variability in Sr isotope composition in the dissolved load, we distinguish several endmembers: seawater(approximate to marine rain), Miocene marls, Jurassic limestones, water treatment plants (and possibly another attributable to fertilizers). Combined with major and trace element variational Sr isotope fluctuations indicate time-varying proportions of different water endmembers at the outflow and suggest a general dynamic model. Based on PCA (principal component analysis), a 3D representation allows to visualize the geochemical evolution of the Vene waters. In particular, Sr isotopes clearly indicate that the inflow of karstic waters during the flood was not continuous but occurred as a series of marked oscillations between flowing waters with chemical signature of Miocene lithologies and increasing flushes of deeper waters that interacted with Jurassic lithologies. (C) 1997 Elsevier Science B.V

The Eastern boundary of the giant karst of Vaucluse in relation to the lineament-fault of Aix-en-Provence (Provence, Alps, Cote d'Azur Region, France), 1997, Rousset C. ,
In the Saint-Donat area, along the Mardaric stream, a tributary of the mid Durance, water losses associated with temporary springs can be observed. These springs run off overflows of the Vaucluse karstic system. Their impluvium extends over the limestones of the eastern part of the Montagne de Lure; this karstic area contributes, with the runoff entering into the losses, to the underground flows of the Fontaine de Vaucluse. As it rose eastwards, the drainage network of this giant karst was halted by the faults of the Aix-en-Provence lineament, in which very strongly deepening marls form a barrier around the aquifer. This is new evidence of the part played by the Hercynian-inherited lineament framework in limiting giant karsts of the Vaucluse-type, as is the case for the Alpine carbonate platforms in which they have developed

Limestone dissolution processes in beke doline Aggtelek National Park, Hungary, 1997, Zambo L. , Ford D. C. ,
Aggtelek National Park, Hungary, is a limestone karst upland characterized by karren, dolines and river caves. For a period of two years, climatic and carbonate dissolution variables were monitored at four depths in a 7.5 m shaft through the soil fill in the floor of a typical large (150m diameter) doline. Results are compared to other monitoring stations in shallow soils on side slopes. Runoff and groundwater flow are focused into the base of the doline soil fill, where moisture is maintained at 70-90 per cent field capacity and temperatures permit year-round production of soil CO2. The capacity to dissolve calcite (limestone) ranges from c. 3 g m(-2) per year beneath thin soils on the driest slopes to 17-30 g m(-2) per year in the top 1-2 m of doline till and at its base 5-7 m below.

Sinkholes, soils, fractures, and drainage: Interstate 70 near Frederick, Maryland, 1997, Boyer Bw,
Numerous sinkholes have recently formed on both sides of Interstate 70 south of Frederick, Maryland, All the sinkholes are cover-collapse types, which form when soil cavities grow upward from the bedrock surface until their roofs become unstable, Areas at greatest risk for sinkhole development lie within a network of dry swales, The roughly dendritic map pattern and presence of allochthonous siliciclastic alluvium suggest that these swales are the vestiges of a vanished surface drainage system. Sinkholes occur mainly along bedrock escarpments underlying the swales, which are located along an easterly-trending transverse fracture and a series of strike-parallel fractures which intersect with it. Although the surface drainage appears to have Bowed east and north in the past, surface runoff in large quantities is infiltrating the ground or directly entering some of the sinkholes, then following subsurface conduits which convey it southward under the highway. Compaction grouting has been employed to prevent collapse or further subsidence of the most threatened portions of the highway. Soil Survey maps can be useful in locating cryptic intermittent or relict drainage pathways which may be at high risk for sinkhole formation when subjected to anthropogenic concentrations of perched storm water

Results 16 to 30 of 113
You probably didn't submit anything to search for