MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology

Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That well hydrograph is a graph of water level fluctuations in a well [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for traps (Keyword) returned 23 results for the whole karstbase:
Showing 16 to 23 of 23
DOLINE FILLS - CASE STUDY OF THE FAVERGHERA PLATEAU (VENETIAN PRE-ALPS, ITALY), 2009, Sauro Ugo, Ferrarese Francesco, Francese Roberto, Miola Antonella, Mozzi Paolo, Rondo Gualtiero Quario, Trombino Luca & Valentini Gianna
The sedimentary fills of two dolines in the Faverghera plateau in the Venetian Pre-Alps, south of Belluno, have been investigated. This small plateau is a sub-horizontal surface about 0.5 km2 wide, located on the northeastern slope of Mt. Faverghera (1640 m a.s.l.) hosting nearly 40 karst dolines partially filled by periglacial slope deposits. Topographic survey, electric resistivity tomography (ERT), soil and pollen analyses have been carried on. The structure of the dolines and the characters of the filling deposits indicate that the evolution of these forms has been controlled by the alternation of di*erent climatic and environmental conditions during the Pleistocene. The results indicate that the dolines are filters for the sediments, more than good traps, archiving only some of the climatic and environmental changes.

The legend of carbon dioxide heaviness, 2009, Badino G.
The false legend of carbon dioxide traps resulting from the weight of carbon dioxide gas is disproved. In spite of water-vapor lightness in comparison with air, no water-vapor trap exists on cave ceilings. In fact, underground atmospheres with specific compositions are not related to gravity, but to the absence of any air movement around the gas sources. The process of double diffusion of oxygen and carbon dioxide during organic compound decomposition in still air is shown to be significant. This phenomenon can form atmospheres that are deadly due to oxygen deficiencies and poisonous because of excess carbon dioxide. Carbon dioxide storage behaves like a liquid and can flow or can be poured, as cold air can, but these are typical transient processes with no relation to a caves foul air formation.

Effectiveness and adequacy of well sampling using baited traps for monitoring the distribution and abundance of an aquatic subterranean isopod, 2009, Hutchins B. And Orndorff W.
Land-use practices in karst can threaten aquatic subterranean species (stygobionts). However, since their habitat is mostly inaccessible, baseline ecological data such as distribution and population size are not known, making monitoring and risk assessment difficult. Wells provide easy and inexpensive access for sampling subterranean aquatic habitats. Over three years, including a two-month period of intensive sampling, the authors sampled sixteen wells (ten repeatedly) in Jefferson County, West Virginia, USA, for a threatened stygobiont, the isopod crustacean Antrolana lira Bowman, in two areas where the species was known to occur. A. lira was collected during 21 of 54 sampling events. A. lira was collected from 6 wells in which a total of 31 of the sampling events took place. Borehole logs suggest that only these 6 wells intersected appropriate habitat. Using the binomial approximation, the authors conclude that a random well has a 29% to 91% chance of intersecting appropriate habitat. In a well that intersects appropriate habitat, a single sampling event has a 51% to 85% chance of successful capture. The species occurs heterogeneously throughout the aquifer both in space and time, and thus, repeated sampling of multiple wells is needed to confidently establish presence or absence. In a contiguous block of phreatic carbonate- aquifer habitat analogous to that in the study area, at least 6 wells need to be sampled at least one time each to determine absence or presence of A. lira with 95% confidence. Additional studies with larger sample size would better constrain confidence intervals and facilitate refinement of minimum sampling requirements. In one well that consistently yielded from 8 to 19 animals, the population was estimated by mark- recapture methods. The limited data only allowed a very rough result of 112.3 6 110 (95% CI) individuals. Successful recapture suggests that animals are largely stationary when a food source is present. Animals were collected at depths below the water surface from ,1m (hand-dug well and cave) to , 30 meters in drilled wells. No migration of animals between wells was observed.

Hypogene Processes of the Gypsum Beds in Sangaw Sinkholes, Kurdistan Region, NE-Iraq, 2011, Ameen, B. M.

The Sangaw region is located at the western part of Zagros orogenic belt at the boundary between Low and High Folded Zones, Sulaimani governorate in Kurdistan region. The area characterized by low amplitude folds that are trending northwest southeast and arranged in en echelon pattern. The exposed formations are Eocene Pila Spi (limestone), middle Miocene Fat`ha(lagoon) and Upper Fars (clastics) formations. Many large and small sinkholes are found around Ashdagh anticline; some of them about 50 m in diameter and about 30 m deep. Some are developed into complicated cave systems with collaps blocks and breccias in addition to narrow passages and fissures. The largest of them is located directly to the west of Darzilla village at the southeastern plunge of Ashdagh anticline. The sinkholes occur in Fat`ha and in the Pila Spi Formations. The walls of the sinkholes are covered by secondary gypsum, sulfur, bitumen and secondary calcite. Inside the cave collapse, breccias and blocks with lensoidal stratified clayey sediments as weathering product could be seen. The water is acidic (pH=4) inside the caves and discharges as large spring (200L/S) with white milky color; it is called in the local Kurdish language, “Awa Spi “which means white stream. The weathering of the carbonate rocks is intense inside the cave and appears as honeycombs and rills mark which have very rough surface with dull color. The sinkholes were produced from the dissolution of thick gypsum and limestone beds. The origin of these caves has been proposed to be hypogenic speleogenesis due to the presence of gypsum and bitumen. These materials with the aid of bacteria enrich the water with H2S which aciditfies the water and precipitates the sulfur and secondary gypsum on the cave wall. The formation of H2SO4 by oxidaton of H2S is the main reason that aid the sinkhole hypogene generation in Sangaw area. A realistic model is drawn to interpret and connect the following: 1- The stratigraphy and structure of the area encourage the generation of underground stagnant pond suitable for reacting with the emanating H2S necessary for the hypogene generation of the sinkholes and precipitation of secondary native sulfur and gypsum.2- dissolution of gypsum and its reduction by bacteria. 3- upward migration of bitumen from nearby oil traps(hydrocarbon accumulation).


OBSERVATIONS OF PLIOCENE KARSTS FOSSILIZED BY QUATERNARY EOLIAN SILTS IN THE MATMATA MOUNTAINS (SOUTH-EAST TUNISIA), 2012, Sghari, Abdeljalil

The submeridional Dahar chain in southeastern Tunisia is over 200 km long. It is separated from the Mediterranean Sea by the Jeffara plain with some tens of kilometers in width. This landscape continues to the South into Libya, but to the North, the chain ends with the Matmata mountains which form a plateau slightly inclined to the west and some 10 km wide. The eastern scarp shows a mainly calcareous geological stratigraphy from Upper Permian to the Senonian. The Dahar-Matmata structure belongs to the Sahara platform and shows a hiatus during the whole Tertiary, since it was emerged since Upper Cretaceous. The Tunisian Atlas nearby shows a completely different paleogeographic evolution, with a complete Tertiary series and a later Plio-Quaternary structuration. These two paleogeographic domains of Southern Tunisia, the Sahara Atlas and the NE border of the Sahara platform, were influenced by the Messinian crisis (5.9 Ma to 5.3 Ma). This was expressed by the collapse of the Mediterranean Sea level, profoundly modifying the fluvial dynamics with an inversion of the erosional system, from normal erosion to regressive erosion. It results a deepening of canyons in the downstream part and a deepening of the watercourses in the upstream part. The geological structures in the Messinian have been deeply affected by these large eustatic changes, with an incision of cluses in the Atlas and the deposition of a thick clayeysandy series that we could recently link to deltaic systems and Gilbert deltas. The re-establishment of seaways between the Atlantic and the Mediterranean, and the subsequent infill in the Lower Pliocene (Zanclean transgression), with an important inpact in Southern Tunisia, had multiple consequences in that region. The newly adjusted sealevel, together with a more humid climate that was confirmed by faunal and floral extension oof tropical plants in Northern Africa, stimulated an important karstification of the limestone areas. In the Dahar chain, caves, dolines, karstic depressions or karstic dry valleys emerged, the most spectacular ones being found in the Matmata Mountains. The karstic depressions are the forms that represent best this Pliocene karstification that surely was interrupted in an early stage, because localized endokarstic forms had not enough time to develop. So the karstification seems to have been active in Matmata from 5.4 to 4.0 million years, i.e. two times as long than the duration of the Messinian crisis. The interruption of karstification is due to an increase in temperature and dryness, which even gets more intense during the Pliocene, pulverizing the soils. Already at the beginning of the desertification, a calcareous crust forms by rapid cristallization of dirt. It is immediately transported from the karstic zones to the Jeffara plain. This transfer fo dissolved calcite was the origin of the resistant calcitic crust well known in the Jeffara plain. We now identified the same crust in a karstic depression in the Matmata Mountains, opening the way to new geomorphologic and tectonic interpretations, and a review of the eolian silts formerly attributed to the Upper Pleistocene. Later, during Upper Pliocene-Gelasian, we observe a general tectonic uplift of the Dahar chain and the Matmata Mountains as well as the subsidence of the Jeffara plain at the Medenine fault (NW-SE), prolonging the large Gafsa fault towards the East. The karstic paleoforms were thus uplifted more than 500 m, but nevertheless remain open on the Jeffara plain, as seen by large depressions. As a consequence, the karstic depressions of Matmata played the role of traps for eolian silts blown from the Jeffara plain during the extreme desertification in the Upper Pliocene-Gelasian. The morphological reconstruction since the Messinian shows a succession of important events during the Pliocene that profoundly influenced the Quaternary. All indications permit to reject the hypothesis that the Matmata silts came from the West (Eastern Erg).

 


OBSERVATIONS OF PLIOCENE KARSTS FOSSILIZED BY QUATERNARY EOLIAN SILTS IN THE MATMATA MOUNTAINS (SOUTH-EAST TUNISIA), 2012, Sghari, Abdeljalil

The submeridional Dahar chain in southeastern Tunisia is over 200 km long. It is separated from the Mediterranean Sea by the Jeffara plain with some tens of kilometers in width. This landscape continues to the South into Libya, but to the North, the chain ends with the Matmata mountains which form a plateau slightly inclined to the west and some 10 km wide. The eastern scarp shows a mainly calcareous geological stratigraphy from Upper Permian to the Senonian. The Dahar-Matmata structure belongs to the Sahara platform and shows a hiatus during the whole Tertiary, since it was emerged since Upper Cretaceous. The Tunisian Atlas nearby shows a completely different paleogeographic evolution, with a complete Tertiary series and a later Plio-Quaternary structuration. These two paleogeographic domains of Southern Tunisia, the Sahara Atlas and the NE border of the Sahara platform, were influenced by the Messinian crisis (5.9 Ma to 5.3 Ma). This was expressed by the collapse of the Mediterranean Sea level, profoundly modifying the fluvial dynamics with an inversion of the erosional system, from normal erosion to regressive erosion. It results a deepening of canyons in the downstream part and a deepening of the watercourses in the upstream part. The geological structures in the Messinian have been deeply affected by these large eustatic changes, with an incision of cluses in the Atlas and the deposition of a thick clayeysandy series that we could recently link to deltaic systems and Gilbert deltas. The re-establishment of seaways between the Atlantic and the Mediterranean, and the subsequent infill in the Lower Pliocene (Zanclean transgression), with an important inpact in Southern Tunisia, had multiple consequences in that region. The newly adjusted sealevel, together with a more humid climate that was confirmed by faunal and floral extension oof tropical plants in Northern Africa, stimulated an important karstification of the limestone areas. In the Dahar chain, caves, dolines, karstic depressions or karstic dry valleys emerged, the most spectacular ones being found in the Matmata Mountains. The karstic depressions are the forms that represent best this Pliocene karstification that surely was interrupted in an early stage, because localized endokarstic forms had not enough time to develop. So the karstification seems to have been active in Matmata from 5.4 to 4.0 million years, i.e. two times as long than the duration of the Messinian crisis. The interruption of karstification is due to an increase in temperature and dryness, which even gets more intense during the Pliocene, pulverizing the soils. Already at the beginning of the desertification, a calcareous crust forms by rapid cristallization of dirt. It is immediately transported from the karstic zones to the Jeffara plain. This transfer fo dissolved calcite was the origin of the resistant calcitic crust well known in the Jeffara plain. We now identified the same crust in a karstic depression in the Matmata Mountains, opening the way to new geomorphologic and tectonic interpretations, and a review of the eolian silts formerly attributed to the Upper Pleistocene. Later, during Upper Pliocene-Gelasian, we observe a general tectonic uplift of the Dahar chain and the Matmata Mountains as well as the subsidence of the Jeffara plain at the Medenine fault (NW-SE), prolonging the large Gafsa fault towards the East. The karstic paleoforms were thus uplifted more than 500 m, but nevertheless remain open on the Jeffara plain, as seen by large depressions. As a consequence, the karstic depressions of Matmata played the role of traps for eolian silts blown from the Jeffara plain during the extreme desertification in the Upper Pliocene-Gelasian. The morphological reconstruction since the Messinian shows a succession of important events during the Pliocene that profoundly influenced the Quaternary. All indications permit to reject the hypothesis that the Matmata silts came from the West (Eastern Erg).


New data on the dolines of Velebit Mountain: An evaluation of their sedimentary archive potential in the reconstruction of landscape evolution , 2012, Ballut Christle, Faivre Sanja

The first approach to the relationships between societies and physical environments on Velebit Mountain shows narrow correlations between spatial distribution of dolines, soil formation, hydric resources, vegetation and land occupation. In 2002, sediment cores have been obtained from different dolines of Velebit Mountain to evaluate the potential of their sedimentary archives in order to reconstruct the landscape history. On the littoral slopes and on the top parts of the mountain, the dolines were difficult to dig due to the presence of rocks in depth. Nevertheless, the cores have been sampled and soil analyses have been made (physical and chemical analyses: colour, grain size, pH, CaCO3, C, N, P, K, Mg, CEC). No dating materials were found. The first results attest to rather homogeneous pedologic processes in each area studied (Kamenica, Stinica, Baške Oštarije and Bilensko Mirevo), but they also indicate colluvial contributions. These contributions differ from one doline to another according to their location and morphology. Dolines reveal themselves to be not very good traps, as the representative nature of their sedimentary archives could be very local. However, the best profile has been obtained at Bilensko Mirevo, which shows a change in the soil nutrient content from an impoverishment in its middle part toward an increase of the soil nutrients in recent parts. Those environmental changes could not be precisely dated, but could be correlated with the 17th to 20th century phase of strong human impact on the Velebit environment and with the rural depopulation observed since the second half of the 20th century.


New species and new records of springtails (Hexapoda: Collembola) from caves in the Salem Plateau of Illinois, USA, 2013, Sotoadames F. N. , Taylor S. J.

The springtail (Hexapoda: Collembola) fauna of eight caves (Wizard Cave, Pautler Cave, Spider Cave, Wanda’s Waterfall Cave, Illinois Caverns, Stemler Cave, Hidden Hand Cave, and Bat Sump Cave) in the Salem Plateau of southwestern Illinois (Monroe and St. Clair counties) was surveyed in 2009 using a combination of methods, including pitfall traps, Berlese-funnel processing of litter, and hand collections by quadrat, on drip pools, free standing bait, and random locations. In total, forty-nine species of springtails were found. Four are described as new to science (Onychiurus pipistrellae n. sp., Pygmarrhopalites fransjanssens n. sp, P. incantator n. sp, and P. salemensis n. sp), four may represent new species but there is insufficient material available to prepare full descriptions (two species in the genus Superodontella, one in Pseudachorutes, one in Sminthurides), and three others (Ceratophysella cf. brevis, C. cf. lucifuga, and Folsomia cf. bisetosa) are identified to species, but differences from the nominal species suggest further studies may indicate the Illinois populations represent distinct forms. In addition, five other species represent new records for Illinois, and eighteen are new cave records for the species in North America. The new records more than double the number of springtails species known from caves in the Salem Plateau region. More than half (twenty-nine) of the species reported are ranked as rare (S1–S2) at the state level. The total number of springtail species in Salem Plateau caves could be more than twice what is recorded in the present study, and more new species and state records should be found when caves in other Illinois karst regions are more thoroughly examined.


Results 16 to 23 of 23
You probably didn't submit anything to search for