Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That turbulent flow is 1. type of flow that begins to develop in a dissolutional sub-conduit as its diameter increases to the point where differences between flow velocity at the bounding wall (slowed due to friction and adhesion) and the maximum velocity in the tube's center are sufficient to cause development of eddies within the flowing water [9]. 2. the flow condition in which inertial forces predominate over viscous forces and in which head loss is not linearly related to velocity [22]. it is typical of flow in surface-water bodies and subsurface conduits in karst terranes provided that the conduits have a minimum diameter of approximately 2-5mm although some research has suggested that 5-15 mm may be more appropriate. see also laminar flow; reynolds number; turbulent threshold.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for colloid (Keyword) returned 24 results for the whole karstbase:
Showing 16 to 24 of 24
Metal transport to karst springs during storm flow: an example from Fort Campbell, Kentucky/Tennessee, USA, 2003, Vesper D. J. , White W. B. ,
Low levels of heavy metals were investigated in a series of springs discharging from the Mississippian limestone aquifer underlying the Fort Campbell Army Base in western Kentucky/Tennessee. Springs were sampled at short time intervals through periods of storm discharge. Unfiltered samples were digested and analysed by inductively-coupled plasma mass spectrometry. Metals detected at the mug/l level included As, Cd, Cr, Ni and Pb. Metal concentrations exhibited a pronounced maximum coincident with the peak of the storm hydrograph in contrast to carbonate species (Ca, Mg) which dipped to a minimum at the peak of the storm hydrograph. Metal concentrations track with aluminium and iron suggesting that the metal transport is mainly by adsorption onto suspended particulates which are mobilized during storm flow.

Colloid Transport in the Subsurface: Past, Present, and Future Challenges, 2004, Mccarthy John F. , Mckay Larry D. ,
This paper attempts to introduce the work described in this special section on colloid transport within a more general perspective of the evolution of our understanding of the importance of colloids in subsurface systems. The focus will be on the transport of colloidal particles in natural (i.e., chemically and physically heterogeneous) geological settings because the complexity imposed by these situations represents the greatest challenge to current and future understanding. Great progress has been made in addressing many of the key questions related to colloid transport. However, as in most areas of science, increased knowledge also serves to reveal new and more complex challenges that must be addressed

Natural and EDTA-complexed lanthanides used as a geochemical probe for aquifers: a case study of Orleans valley's alluvial and karstic aquifers, 2005, Borgne Fl, Treuil M, Joron Jl, Lepiller M,
The transit of chemical elements within the different parts of Orleans valley's aquifer is studied by two complementary methods. Those methods rely on the fractionation of lanthanides (Ln) during their migration in natural waters. The first method consists in studying natural lanthanides patterns within the watershed, at its entries and exits. The second one lies on multi-tracer experiments with Ln-EDTA complexes. This work is completed through an observation network consisting of 52 piezometers set on a sand and gravel quarry, and the natural entries and exits of the aquifer. Orleans valley's aquifer, which is made of an alluvial watershed lying on a karstic aquifer, is mainly fed by the Loire river via a large karstic network. At the entries of the aquifer (Loire river at Jargeau), the Ln concentrations in the dissolved fraction (< 0,22 {micro}m) vary with the flow of the river. During floods, Loire river waters display bulk continental crust-like Ln compositions with a slight enrichment in heavy Ln from Dy to Lu. When the Loire river flow becomes low level, the crust-normalised Ln patterns show a depletion in light Ln whereas Lu concentrations remain identical. The same evolution spatially occurs between the entries and exits of the karstic network. Spring waters are depleted in light Ln relative to the Loire river whereas heavy Ln (Yb, Lu) remain constant during transit. Furthermore, the depletion in light Ln increases with the distance between entries and exits. Tracer experiments using EDTA-complexed Ln within and between the alluvial and calcareous parts of the watershed have shown that complexed Ln are fractionated across all these geological strata. The recoveries of tracers always follow the order light Ln < heavy Ln. Moreover, both sediments analyses and filtering experiments at a porosity of 0,02 {micro}m show that, in the presence of EDTA, Ln adsorb onto sediments and colloids in the order light Ln > heavy Ln. On the other hand, the filtration of alluvial groundwater with high colloids content induces no significant Ln fractionation when the solution contains no strong chelating agent. Hence, the transit of natural and artificial Ln in Orleans valley aquifer can be explained by two complementary processes. (1) Decanting/filtering or, on the opposite, stirring of colloids. Those processes induce no important Ln fractionation. (2) Exchanges of Ln between solute complexes, colloids and sediments due to the presence of strong chelating agents. Those exchanges fractionate the Ln in the order of their stability constants. Considering the natural Ln fractionation that occurs in the Loire river and in the studied aquifer, the carbonates, the stability constants of which follow the order light Ln < heavy Ln, are the best candidates as natural strong chelating agents. From the hydrodynamic point of view, both tracer experiments and natural Ln concentrations show that the transfer of elements within the alluvial watershed is pulsed by the Loire river movements. During an ascent phase, the elements migrate away from and perpendicularly to the karstic channels direction. During the river descent, horizontal flows are quasi absent and migrations are mainly vertical from the alluvia down to the calcareous part of the aquifer. Due to those hydrodynamic characteristics, alluvia and non fissured limestone have a high dynamic confining capacity. Elements with high affinity for solid or colloidal phases (e.g. light Ln) have an increased confining capacity in the whole aquifer, by sorption and colloid filtration within the alluvia and at the alluvial-calcareous interface, and by colloid decanting within the karstic channels. Overall, this model combines two components. The first one, hydrodynamical, results from the repartition of the loads pulsed by river Loire through the karst. The second one physico-chemical, results from the element distribution mainly controlled by colloide/solute complexes exchange coefficients

Assessing the Vulnerability of a Municipal Well Field to Contamination in a Karst Aquifer, 2005, Renken R. A. , Cunningham K. J. , Zygnerski M. R. , Wacker M. A. , Shapiro A. M. , Harvey R. W. , Metge D. W. , Osborn C. L. , Ryan J. N. ,
Proposed expansion of extractive lime-rock mines near the Miami-Dade County Northwest well field and Everglades wetland areas has garnered intense scrutiny by government, public, environmental stakeholders, and the media because of concern that mining will increase the risk of pathogen contamination. Rock mines are excavated to the same depth as the well field's primary producing zone. The underlying karst Biscayne aquifer is a triple-porosity system characterized by (1) a matrix of interparticle porosity and separate vug porosity; (2) touching-vug porosity that forms preferred, stratiform passageways; and, less commonly, (3) conduit porosity formed by thin solution pipes, bedding-plane vugs, and cavernous vugs. Existing ground-water flow and particle tracking models do not provide adequate information regarding the ability of the aquifer to limit the advective movement of pathogens and other contaminants. Chemical transport and colloidal mobility properties have been delineated using conservative and microsphere-surrogate tracers for Cryptosporidium parvum. Forced-gradient tests were executed by introducing conservative tracers into injection wells located 100 m (328 ft) from a municipal-supply well. Apparent mean advective velocity between the wells is one to two orders of magnitude greater than previously measured. Touching-vug, stratiform flow zones are efficient pathways for tracer movement at the well field. The effective porosity for a continuum model between the point of injection and tracer recovery ranges from 2 to 4 percent and is an order of magnitude smaller than previously assumed. Existing well-field protection zones were established using porosity estimates based on specific yield. The effective, or kinematic, porosity of a Biscayne aquifer continuum model is lower than the total porosity, because high velocities occur along preferential flow paths that result in faster times of travel than can be represented with the ground-water flow equation. Tracer tests indicate that the relative ease of contaminant movement to municipal supply wells is much greater than previously considered

Sinkholes and the Engineering and Environmental Impacts of Karst, 2005, Beck B. F.

Conference Proceedings

Sinkholes and the Engineering and Environmental Impacts of Karst Contains over 70 papers addressing karst topography which impacts water resources, waste disposal, foundation stability, and a multitude of other geotechnical and environmental issues. These papers were presented at the 10th Multidisciplinary Conference held September 24-28, 2005 in San Antonio, Texas and Sponsored by the Geo-Institute of ASCE, P. E. LaMoreaux & Associates, Inc. and Edwards Aquifer Authority. The goal of this conference was to share knowledge and experience among disciplines by emphasizing practical applications and case studies. This proceedings will benefit environmental and geotechnical engineers, and others involved in water resources, water disposal, and foundation stability issues.


Application of Geophysical Logging Techniques for Multi-Channel Well Design and Installation in a Karst Aquifer (by Frank Bogle, ...)

Case Studies of Massive Flow Conduits in Karst Limestone (by Jim L. Lolcama)

A Case Study of the Samanalawewa Reservoir on the Walawe River in an Area of Karst in Sri Lanka (by K. Laksiri, ...)

Characterization and Water Balance of Internal Drainage Sinkholes (by Nico M. Hauwert, ...)

Characterization of Desert Karst Terrain in Kuwait and the Eastern Coastline of the Arabian Penninsula (by Waleed Abdullah, ...)

Characterization of a Sinkhole Prone Retention Pond Using Multiple Geophysical Surveys and Closely Spaced Borings (by Nick Hudyma, ...)

Combining Surface and Downhole Geophysical Methods to Identify Karst Conditions in North-Central Iowa (by J. E. Wedekind, ...)

Complexities of Flood Mapping in a Sinkhole Area (by C. Warren Campbell, P.E.)

Conceptualization and Simulation of the Edwards Aquifer, San Antonio Region, Texas (by R. J. Lindgren, ...)

Database Development and GIS Modeling to Develop a Karst Vulnerability Rating for I-66, Somerset to London, KY (by Michael A. Krokonko, ...)

Design and Construction of the Foundations for the Watauga Raw Water Intake Facility in Karstic Limestone near the City of Johnson City, TN (by Tony D. Canale, P.E., ...)

Detection of Three-Dimensional Voids in Karstic Ground (by Derek V. Morris, P.E., ...)

Development and Evolution of Epikarst in Mid-Continent US Carbonates (by Tony L. Cooley, P.E.)

Dye Tracing Sewage Lagoon Discharge in a Sandstone Karst, Askov, Minnesota (by Emmit Calvin Alexander, Jr., ...)

The Effectiveness of GPR in Sinkhole Investigations (by E. D. Zisman, P.E., ...)

Effects of Anthropogenic Modification of Karst Soil Texture on the Water Balance of ?Alta Murgia? (Apulia, Italy) (by F. Canora, ...)

Environmental Isotope Study on Recharge and Groundwater Residence Time in a covered Ordovician Carbonate Rock (by Zhiyuan Ma, ...)

Error and Technique in Fluorescent dye Tracing (by Chris Smart)

Essential Elements of Estimating Engineering Properties of Karst for Foundation Design (by Ramanuja Chari Kannan, P.E., Fellow, ASCE)

Estimating Grout Quantities for Residential Repairs in Central Florida Karst (by Larry D. Madrid, P.E., ...)

Evaluation of Groundwater Residence Time in a Karstic Aquifer Using Environmental Tracers: Roswell Artesian Basin, New Mexico (by Lewis Land)

Experience of Regional Karst Hazard and Risk Assessment in Russia (by A. L. Ragozin, ...)

Experimental Study of Physical Models for Sinkhole Collapses in Wuhan, China (by Mingtang Lei, ...)

Fractal Scaling of Secondary Porosity in Karstic Exposures of the Edwards Aquifer (by Robert E. Mace, ...)

The Geological Characteristics of Buried Karst and Its Impact on Foundations in Hong Kong, China (by Steve H. M. Chan, ...)

Geophysical Identification of Evaporite Dissolution Structures Beneath a Highway Alignment (by M. L. Rucker, ...)

Geotechnical Analysis in Karst: The Interaction between Engineers and Hydrogeologists (by R. C. Bachus, P.E.)

The Gray Fossil Site: A Spectacular Example in Tennessee of Ancient Regolith Occurrences in Carbonate Terranes, Valley and Ridge Subpovince, South Appalachians U.S.A. (by G. Michael Clark, ...)

Ground-Water Basin Catchment Delineation by Bye Tracing, Water Table Mapping, Cave Mapping, and Geophysical Techniques: Bowling Green Kentucky (by Nicholas C. Crawford)

Groundwater Flow in the Edwards Aquifer: Comparison of Groundwater Modeling and Dye Trace Results (by Brian A. Smith, ...)

Grouting Program to Stop Water Flow through Karstic Limestone: A Major Case History (by D. M. Maciolek)

Highway Widening in Karst (by M. Zia Islam, P.E., ...)

How Karst Features Affect Recharge? Implication for Estimating Recharge to the Edwards Aquifer (by Yun Huang, ...)

Hydrogeologic Investigation of Leakage through Sinkholes in the Bed of Lake Seminole to Springs Located Downstream from Jim Woodruff Dam (by Nicholas C. Crawford, ...)

The Hydrologic Function of the soil and Bedrock System at Upland Sinkholes in the Edwards Aquifer Recharge Zone of South-Central Texas (by A. L. Lindley)

An Integrated Geophysical Approach for a Karst Characterization of the Marshall Space Flight Center (by Lynn Yuhr, ...)

Integrated Geophysical Surveys Applied to Karstic Studies Over Transmission Lines in San Antonio, Texas (by Mustafa Saribudak, ...)

Judge Dillon and Karst: Limitations on Local Regulation of Karst Hazards (by Jesse J. Richardson, Jr.)

Karst Groundwater Resource and Advantages of its Utilization in the Shaanbei Energy Base in Shaanxi Province, China (by Yaoguo Wu, ...)

Karst Hydrogeology and the Nature of Reality Revisited: Philosophical Musings of a Less Frustrated Curmudgeon (by Emmit Calvin Alexander, Jr.)

Karst in Appalachia ? A Tangled Zone: Projects with Cave-Sized Voids and Sinkholes (by Clay Griffin, ...)

Karstic Features of Gachsaran Evaporites in the Region of Ramhormoz, Khuzestan Province, in Southwest Iran (by Arash Barjasteh)

Large Perennial Springs of Kentucky: Their Identification, Base Flow, Catchment, and Classification (by Joseph A. Ray, ...)

Large Plot Tracing of Subsurface Flow in the Edwards Aquifer Epikarst (by P. I. Taucer, ...)
Lithology as a Predictive Tool of Conduit Morphology and Hydrology in Environmental Impact Assessments (by George Veni)

Metadata Development for a Multi-State Karst Feature Database (by Yongli Gao, ...)

Micropiling in Karstic Rock: New CMFF Foundation Solution Applied at the Sanita Factory (by Marc Ballouz)

Modeling Barton Springs Segment of the Edwards Aquifer Using MODFLOW-DCM (by Alexander Y. Sun, ...)

Multi-Level Monitoring Well Completion Technologies and Their Applicability in Karst Dolomite (by Todd Kafka, ...)

National-Scale Risk Assessment of sinkhole Hazard in China (by Xiaozhen Jiang, ...)

New Applications of Differential Electrical Resistivity Tomography and Time Domain Reflectometry to Modeling Infiltration and Soil Moisture in Agricultural Sinkholes (by B. F. Schwartz, ...)

Non-Regulatory Approaches to Development on Karst (by Jesse J. Richardson, Jr., ...)

PA State Route 33 Over Bushkill Creek: Structure Failure and Replacement in an Active Sinkhole Environment (by Kerry W. Petrasic, P.E.)

Quantifying Recharge via Fractures in an Ashe Juniper Dominated Karst Landscape (by Lucas Gregory, ...)

Quantitative Groundwater Tracing and Effective Numerical Modeling in Karst: An Example from the Woodville Karst Plain of North Florida (by Todd R. Kincaid, ...)

Radial Groundwater Flow at Landfills in Karst (by J. E. Smith)

Residual Potential Mapping of Contaminant Transport Pathways in Karst Formations of Southern Texas (by D. Glaser, ...)

Resolving Sinkhole Issues: A State Government Perspective (by Sharon A. Hill)

Shallow Groundwater and DNAPL Movement within Slightly Dipping Limestone, Southwestern Kentucky (by Ralph O. Ewers, ...)

Sinkhole Case Study ? Is it or Isn?t it a Sinkhole? (by E. D. Zisman, P.E.)

Sinkhole Occurrence and Changes in Stream Morphology: An Example from the Lehigh Valley Pennsylvania (by William E. Kochanov)

Site Characterization and Geotechnical Roadway Design over Karst: Interstate 70, Frederick County, Maryland (by Walter G. Kutschke, P.E., ...)

Soil Stabilization of the Valley Creek Trunk Sewer Relief Tunnel (by Jeffrey J. Bean, P.E., ...)

Some New Approaches to Assessment of Collapse Risks in Covered Karsts (by Vladimir Tolmachev, ...)

Spectral Deconvolution and Quantification of Natural Organic Material and Fluorescent Tracer Dyes (by Scott C. Alexander)

Springshed Mapping in Support of Watershed Management (by Jeffrey A. Green, ...)

Sustainable Utilization of Karst Groundwater in Feicheng Basin, Shandong Province, China (by Yunfeng Li, ...)

Transport of Colloidal and Solute Tracers in Three Different Types of Alpine Karst Aquifers ? Examples from Southern Germany and Slovenia (by N. Göppert, ...)

Use of the Cone Penetration Test for Geotechnical Site Characterization in Clay-Mantled Karst (by T. C. Siegel, ...)

The Utility of Synthetic Aperture Radar (SAR) Interferometry in Monitoring Sinkhole Subsidence: Subsidence of the Devil?s Throat Sinkhole Area (Nevada, USA) (by Rana A. Al-Fares)

Void Evolution in Soluble Rocks Beneath Dams Under Limited Flow Condition (by Emmanuel S. Pepprah, ...)

The Genesis of the Hope Downs Iron Ore Deposit, Hamersley Province, Western Australia, 2006, Lascelles Desmond F. ,
The banded iron formation (BIF)-hosted Hope Downs high-grade hematite ore deposits are situated within the Marra Mamba Iron Formation with subsidiary deposits in the Brockman Iron Formation of the Archean to Proterozoic Hamersley Group of Western Australia. The main orebody extends to 260 m below the surface and is unusually rich in martite (pseudomorphous hematite after magnetite) and poor in limonite and goethite compared to other ore deposits of the Marra Mamba Iron Formation. The high-grade hematite ore is mainly within the Newman Member but also occurs in parts of the Nammuldi Member together with low-grade limonitic ore that becomes high grade after calcining. Karst erosion of the overlying Wittenoom Formation has produced steep-sided buried valleys adjacent to the in situ orebodies that contain thick deposits (<160 m) of goethitic and sideritic sediments, including remnants of Robe Pisolite Formation, bedded siderite, hematite gravels, red ochreous detrital material, and enriched scree deposits that are additional sources of ore. The ore consists of low phosphorous martite-limonite-goethite derived from chert-free BIF by supergene weathering. No evidence of the complete carbonate replacement of chert has been found at Hope Downs nor were any traces of preexisting chert bands seen in the ore, despite the abundance of chert bands in BIF elsewhere. A variety of textures and composition shown by cherty BIF adjacent to the orebodies is described from which the origin of the chert-free BIF is inferred, including sedimentary structures consistent with density-current deposition. A model is presented for the origin of the host iron formation and the ore deposits, in which density currents transported reworked iron silicates and hydroxides in colloidal suspension onto an unstable sea floor. The amorphous silica produced during diagenesis of Al-poor iron silicates formed the characteristic chert bands of BIF but some of the hydrous amorphous silica was lost prior to lithification to form chert-free BIF. Weathering of the chert-free BIF produced the high-grade hematite ore that is exposed today

The dripwaters and speleothems of Poole's Cavern: a review of recent and ongoing research, 2010, Hartland, Adam, Ian J Fairchild, Jamie R Lead, David Dominguezvillar, Andy Baker, John Gunn, Mohammed Baalousha And Yon Junam
This paper describes aspects of the geochemical conditions prevalent in the dripwaters of Poole's Cavern, Buxton, UK. We examine what makes Poole's Cavern both highly unusual, and also, extremely useful for understanding geochemical processes, both in hyperalkaline, and natural karstic systems. We review the findings of ongoing research into the colloidal and dissolved organic species and associated trace elements in hyperalkaline dripwaters and show that the composition and appearance of poached-egg stalagmites can largely be explained by the high pH conditions prevalent in their parent waters and the carbon dioxide sources in cave air.

Aqueous Geochemical Evidence of Volcanogenic Karstification: Sistema Zacaton, Mexico, 2011, Gary M. O. , Doctor D. H. , Sharp J. M.

The Sistema Zacatón karst area in northeastern Mexico (Tamaulipas state) is limited to a relatively focused area (20 km2) in a carbonate setting not prone to extensive karstification. The unique features found here are characteristic of hydrothermal karstification processes, represent some of the largest phreatic voids in the world, and are hypothesized to have formed from interaction of a local Pleistocene magmatic event with the regional groundwater system. Aqueous geochemical data collected from five cenotes of Sistema Zacatón between 2000 and 2009 include temperature (spatial, temporal, and depth profiles), geochemical depth profiles, major and trace ion geochemistry, stable and radiogenic isotopes, and dissolved gases. Interpretation of these data indicates four major discoveries: 1) rock-water interaction occurs between groundwater, the limestone matrix, and local volcanic rocks; 2) varying degrees of hydrogeological connection exist among cenotes in the system as observed from geochemical signatures; 3) microbially-mediated geochemical reactions control sulfur and carbon cycling and influence redox geochemistry; and 4) dissolved gases are indicative of a deep volcanic source. Dissolved 87Sr/86Sr isotope ratios (mean 0.70719) are lower than those of the surrounding Cretaceous limestone (0.70730-0.70745), providing evidence of groundwater interaction with volcanic rock, which has a 87Sr/86Sr isotope ratio of 0.7050. Discrete hydraulic barriers between cenotes formed in response to sinkhole formation, hydrothermal travertine precipitation, and shifts in the local water table, creating relatively isolated water bodies. The isolation of the cenotes is reflected in distinct water chemistries among them. This is observed most clearly in the cenote Verde where a water level 4-5 meters lower than the adjacent cenotes is maintained, seasonal water temperature variations occur, thermoclines and chemoclines exist, and the water is oxic at all depths. The surrounding cenotes of El Zacatón, Caracol, and La Pilita show constant water temperatures both in depth profile and in time, have similar water levels, and are almost entirely anoxic. A sulfur (H2S) isotope value of δ34S = -1.8 ‰ (CDT) in deep water of cenote Caracol, contrasted with two lower sulfur isotopic values of sulfide in the water near the surface of the cenote (δ34S = -7 ‰ and -8 ‰ CDT). These δ34S values are characteristic of complex biological sulfur cycling where sulfur oxidation in the photic zone results in oxidation of H2S to colloidal sulfur near the surface in diurnal cycles. This is hypothesized to result from changes in microbial community structure with depth as phototropic, sulfur-oxidizing bacteria become less abundant below 20 m. Unique microbial communities exist in the anoxic, hydrothermal cenotes that strongly mediate sulfur cycling and likely influence mineralization along the walls of these cenotes. Dissolved CO2 gas concentrations ranged from 61-173 mg/L and total dissolved inorganic carbon (DIC) δ13C values measured at cenote surfaces ranged from -10.9 ‰ to -11.8 ‰ (PDB), reflecting mixed sources of carbon from carbonate rock dissolution, biogenic CO2 and possibly dissolved CO2 from volcanic sources. Surface measurements of dissolved helium gas concentrations range from 50 nmol/kg to 213 nmol/kg. These elevated helium concentrations likely indicate existence of a subsurface volcanic source; however, helium isotope data are needed to test this hypothesis. The results of these data reflect a speleogenetic history that is inherently linked to volcanic activity, and support the hypothesis that the extreme karst development of Sistema Zacatón would likely not have progressed without groundwater interaction with the local igneous rocks 

From soil to cave: Transport of trace metals by natural organic matter in karst dripwaters, 2012, Hartland A. , Fairchild I. J. , Lead J. R. , Borsato A. , Baker A. , Frisia S. , Baalousha M.

This paper aims to establish evidence for the widespread existence of metal binding and transport by natural organic matter (NOM) in karst dripwaters, the imprint of which in speleothems may have important climatic significance. We studied the concentration of trace metals and organic carbon (OC) in sequentially filtered dripwaters and soil leachates from three contrasting sites: Poole's Cavern (Derbyshire, UK), Lower Balls Green Mine (Gloucestershire, UK) and Grotta di Ernesto (Trentino, Italy). The size-distribution of metals in the three soils was highly similar, but distinct from that found in fractionated dripwaters: surface-reactive metals were concentrated in the coarse fraction (>100 nm) of soils, but in the fine colloidal (b100 nm) and nominally dissolved (b1 nm) fractions of dripwaters. The concentration of Cu, Ni and Co in dripwater samples across all sites were well correlated (R2=0.84 and 0.70, Cu vs. Ni, Cu vs. Co, respectively), indicating a common association. Furthermore, metal ratios (Cu:Ni, Cu:Co) were consistent with NICA-Donnan n1 humic binding affinity ratios for these metals, consistent with a competitive hierarchy of binding affinity (Cu>Ni>Co) for sites in colloidal or dissolved NOM. Large shifts in Cu:Ni in dripwaters coincided with high fluxes of particulate OC (following peak infiltration) and showed increased similarity to ratios in soils, diagnostic of qualitative changes in NOMsupply (i.e. fresh inputs of more aromatic/hydrophobic soil organic matter (SOM) with Cu outcompeting Ni for suitable binding sites). Results indicate that at high-flows (i.e. where fracture-fed flow dominates) particulates and colloids migrate at similar rates, whereas, in slow seepage-flow dripwaters, particulates (>1 μm) and small colloids (1–100 nm) decouple, resulting in two distinct modes of NOM–metal transport: high-flux and low-flux. At the hyperalkaline drip site PE1 (in Poole's Cavern), high-fluxes of metals (Cu, Ni, Zn, Ti, Mn, Fe) and particulate NOM occurred in rapid, short-lived pulses following peak infiltration events, whereas low-fluxes of metals (Co and V>Cu, Ni and Ti) and fluorescent NOM (b ca. 100 nm) were offset from infiltration events, probably because small organic colloids (1–100 nm) and solutes (b1 nm) were slower to migate through the porous matrix than particulates. These results demonstrate the widespread occurrence of both colloidal and particulate NOM–metal transport in cave dripwaters and the importance of karst hydrology in affecting the breakthrough times of different species. Constraints imposed by soil processes (colloid/particle release), direct contributions of metals and NOM from rainfall, and flow-routing (colloid/particle migration) are expected to determine the strength of correlations between NOM-transported metals in speleothems and climatic signals. Changes in trace metal ratios (e.g. Cu:Ni) in speleothems may encode information on NOMcomposition, potentially aiding in targeting of compound-specific investigations and for the assessment of changes in the quality of soil organic matter.

Results 16 to 24 of 24
You probably didn't submit anything to search for