Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That aquitard is a confining bed that retards but does not prevent the flow of water to or from an adjacent aquifer; a leaky confining bed. it does not readily yield water to wells or springs, but may serve as a storage unit for ground water [22]. see also confining unit.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for spring waters (Keyword) returned 29 results for the whole karstbase:
Showing 16 to 29 of 29
Carbonate Speleothems in the Dry, Inneralpine Vinschgau Valley, Northernmost Italy: Witnesses of Changes in Climate and Hydrology Since the Last Glacial Maximum, 2002, Spotl C. , Unterwurzacher M. , Mangini A. , Longstaffe F. J. ,
An interesting association of slope breccia, inactive and active tufa deposits, and speleothems is present in the central Vinschgau Valley, Italy. The occurrence of abundant carbonate cements in fractures and voids of crystalline basement rocks is unexpected considering the fact that this valley is among the driest spots in the entire Alps. Low annual precipitation of 440-530 mm coupled with frequent wind give rise to a semiarid climate and steppe vegetation along the south-facing slopes of the valley. Springs in this area are mostly supersaturated with respect to calcite, and carbonate precipitation occurs locally as tufas and, less well known because of lack of accessibility, as speleothems in the shallow subsurface. The majority of the tufa deposits and speleothems, however, are fossil. Speleothems are composed of low-Mg calcite and calcite-aragonite, respectively. Delicate growth textures including presumable annual lamination caused by pronounced changes in fluorescence intensity are preserved in both calcite and aragonite. Most calcite is a primary precipitate, but small amounts of secondary calcite replacing aragonite are common in most aragonite-bearing samples. The highly radiogenic Sr isotope composition, as well as high concentrations of U, Fe, Sr, and Mg, indicate that the groundwater from which these carbonates precipitated experienced intensive interaction with the host crystalline rocks. The very low tritium concentrations and the lack of a seasonal O isotope variation in modern spring waters, as well as their rather constant hydrochemical composition, also support this suggestion. S isotope data for dissolved sulfate and Ca and Mg sulfate precipitates indicate a sulfide source, i.e., oxidation of sulfide ore minerals in the aquifer, resulting in elevated sulfate and Fe concentrations. Th/U dating of speleothem samples using thermal ionization mass spectrometry yielded ages between 13,710 and 378 yr BP, with most ages falling in the early to middle Holocene. Although no isotopic dates are available for the tufa deposits, field evidence strongly suggests that speleothems, tufa deposits, and carbonate cements in the slope breccia were closely related. We therefore interpret the existence of these terrestrial carbonates as evidence of changes in climate since the middle Holocene. Their presence suggests a higher annual rainfall during the first half of the Holocene, possibly because of enhanced moisture transport from the Mediterranean

Sources of nitrate contamination and age of water in large karstic springs of Florida, 2004, Katz B. G. ,
In response to concerns about the steady increase in nitrate concentrations over the past several decades in many of Florida's first magnitude spring waters (discharge greater than or equal to2.8 m(3)/s), multiple isotopic and other chemical tracers were analyzed in water samples from 12 large springs to assess sources and timescales of nitrate contamination. Nitrate-N concentrations in spring waters ranged from 0.50 to 4.2 mg/L, and delta(15)N values of nitrate in spring waters ranged from 2.6 to 7.9 per mil. Most delta(15)N values were below 6 per mil indicating that inorganic fertilizers were the dominant source of nitrogen in these waters. Apparent ages of groundwater discharging from springs ranged from 5 to about 35-years, based on multi-tracer analyses (CFC-12, CFC-113, SF6, H-3/He-3) and a piston flow assumption; however, apparent tracer ages generally were not concordant. The most reliable spring-water ages appear to be based on tritium and He-3 data, because concentrations of CFCs and SF6 in several spring waters were much higher than would be expected from equilibration with modern atmospheric concentrations. Data for all tracers were most consistent with output curves for exponential and binary mixing models that represent mixtures of water in the Upper Floridan aquifer recharged since the early 1960s. Given that groundwater transit times are on the order of decades and are related to the prolonged input of nitrogen from multiple sources to the aquifer, nitrate could persist in groundwater that flows toward springs for several decades due to slow transport of solutes through the aquifer matrix

Natural and EDTA-complexed lanthanides used as a geochemical probe for aquifers: a case study of Orleans valley's alluvial and karstic aquifers, 2005, Borgne Fl, Treuil M, Joron Jl, Lepiller M,
The transit of chemical elements within the different parts of Orleans valley's aquifer is studied by two complementary methods. Those methods rely on the fractionation of lanthanides (Ln) during their migration in natural waters. The first method consists in studying natural lanthanides patterns within the watershed, at its entries and exits. The second one lies on multi-tracer experiments with Ln-EDTA complexes. This work is completed through an observation network consisting of 52 piezometers set on a sand and gravel quarry, and the natural entries and exits of the aquifer. Orleans valley's aquifer, which is made of an alluvial watershed lying on a karstic aquifer, is mainly fed by the Loire river via a large karstic network. At the entries of the aquifer (Loire river at Jargeau), the Ln concentrations in the dissolved fraction (< 0,22 {micro}m) vary with the flow of the river. During floods, Loire river waters display bulk continental crust-like Ln compositions with a slight enrichment in heavy Ln from Dy to Lu. When the Loire river flow becomes low level, the crust-normalised Ln patterns show a depletion in light Ln whereas Lu concentrations remain identical. The same evolution spatially occurs between the entries and exits of the karstic network. Spring waters are depleted in light Ln relative to the Loire river whereas heavy Ln (Yb, Lu) remain constant during transit. Furthermore, the depletion in light Ln increases with the distance between entries and exits. Tracer experiments using EDTA-complexed Ln within and between the alluvial and calcareous parts of the watershed have shown that complexed Ln are fractionated across all these geological strata. The recoveries of tracers always follow the order light Ln < heavy Ln. Moreover, both sediments analyses and filtering experiments at a porosity of 0,02 {micro}m show that, in the presence of EDTA, Ln adsorb onto sediments and colloids in the order light Ln > heavy Ln. On the other hand, the filtration of alluvial groundwater with high colloids content induces no significant Ln fractionation when the solution contains no strong chelating agent. Hence, the transit of natural and artificial Ln in Orleans valley aquifer can be explained by two complementary processes. (1) Decanting/filtering or, on the opposite, stirring of colloids. Those processes induce no important Ln fractionation. (2) Exchanges of Ln between solute complexes, colloids and sediments due to the presence of strong chelating agents. Those exchanges fractionate the Ln in the order of their stability constants. Considering the natural Ln fractionation that occurs in the Loire river and in the studied aquifer, the carbonates, the stability constants of which follow the order light Ln < heavy Ln, are the best candidates as natural strong chelating agents. From the hydrodynamic point of view, both tracer experiments and natural Ln concentrations show that the transfer of elements within the alluvial watershed is pulsed by the Loire river movements. During an ascent phase, the elements migrate away from and perpendicularly to the karstic channels direction. During the river descent, horizontal flows are quasi absent and migrations are mainly vertical from the alluvia down to the calcareous part of the aquifer. Due to those hydrodynamic characteristics, alluvia and non fissured limestone have a high dynamic confining capacity. Elements with high affinity for solid or colloidal phases (e.g. light Ln) have an increased confining capacity in the whole aquifer, by sorption and colloid filtration within the alluvia and at the alluvial-calcareous interface, and by colloid decanting within the karstic channels. Overall, this model combines two components. The first one, hydrodynamical, results from the repartition of the loads pulsed by river Loire through the karst. The second one physico-chemical, results from the element distribution mainly controlled by colloide/solute complexes exchange coefficients

Mixing of shallow and deep groundwater as indicated by the chemistry and age of karstic springs, 2006, Toth D. J. , Katz B. G.

Large karstic springs in east-central Florida, USA were studied using multi-tracer and geochemical modeling techniques to better understand groundwater flow paths and mixing of shallow and deep groundwater. Spring water types included Ca–HCO3 (six), Na–Cl (four), and mixed (one). The evolution of water chemistry for Ca– HCO3 spring waters was modeled by reactions of rainwater with soil organic matter, calcite, and dolomite under oxic conditions. The Na–Cl and mixed-type springs were modeled by reactions of either rainwater or Upper Floridan aquiferwater with soil organic matter, calcite, and dolomite under oxic conditions and mixed with varying proportions of saline Lower Floridan aquifer water, which represented 4–53% of the total spring discharge. Multiple-tracer data—chlorofluorocarbon CFC-113, tritium (3H), helium- 3 (3Hetrit), sulfur hexafluoride (SF6)—for four Ca–HCO3 spring waters were consistent with binary mixing curves representing water recharged during 1980 or 1990 mixing with an older (recharged before 1940) tracer-free component. Young-water mixing fractions ranged from 0.3 to 0.7. Tracer concentration data for two Na–Cl spring waters appear to be consistent with binary mixtures of 1990 water with older water recharged in 1965 or 1975. Nitrate-N concentrations are inversely related to apparent ages of spring waters, which indicated that elevated nitrate-N concentrations were likely contributed from recent recharge.


Sinkholes in Italy: first results on the inventory and analysis, 2007, Nisio S. , Caramanna G. , Ciotoli G. ,
The Italian Geological Survey (APAT) carried out field surveys and analysis of collapse phenomena (sinkholes) in Italy. The main goal of the project is to collect geological, geomorphological, geochemical and hydrogeological data about the sinkhole-prone areas in Italy in order to develop a spatial database of the characteristics of each phenomenon. The preliminary results of this study provide information on the distribution, geological setting, and monitoring and remediation actions associated with these natural collapses in Italy. Many Italian regions are affected by these natural disasters. Some of them are caused by karst collapses or anthropic activity. However, some occur in areas characterized by buried carbonate bedrock (up to 190 m), as well as by peculiar geological-structural and geochemical scenarios. In these areas it is not reasonable to ascribe the formation mechanism to karst activity. Instead, these types of cavities quickly develop in terrains with a variable granulometry, often in connection with upwelling fluids. In this work some natural specific cases have been studied in order to define the relationships between the geology (regional tectonic elements, mineral spring waters and strong gas vents) and the genesis of the sinkholes. A first attempt of sinkhole classification is also presented

SMALL-SCALE TERRACES AND ISOLATED RIMSTONE POOLS ON STALAGMITES IN CAVES EXHIBIT STRIKING SIMILARITY TO LARGE-SCALE TERRACE LANDSCAPES AT HOTSPRINGS, 2009, Dreybrodt Wolfgang, Gabrovek Franci
We report on sinter terrace forms on the centimetre scale observed on the top and at the base of a stalagmite in kocjanske jame (kocjan caves). These exhibit connected rimstone dams, forming a net-like pattern with active water pools inside. The form is similar to those seen at the large travertine terraces, which form by precipitation of calcite from spring waters highly supersaturated with respect to calcite. In contrast to these patterns we have also found isolated sinter basins with dimensions of a few centimeter on stalagmite-like structures in the cave Dimnice, Slovenia. Similar basins a few meters wide are a tourist attraction in Pamukkale, Denizli, Turkey. The observed features have grown from supersaturated solutions of calcium carbonate in laminar flow. Large-scale landscapes originate under conditions of turbulent flow. Some ideas are presented why, in spite of the clear difference in flow, the shapes are similar on all scales.

Variability in terrestrial and microbial contributions to dissolved organic matter fluorescence in the Edwards Aquifer, Central Texas, 2009, Birdwell J. E. And Engel A. S.
Most cave and karst ecosystems are believed to be dependent on an influx of allochthonous organic carbon. Although microbes are largely responsible for the fate of dissolved organic matter (DOM) in karst, the role of microbes in chemosynthetic (autochthonous) production and processing of DOM has received limited attention. Chromophoric dissolved organic matter (CDOM) is the fraction of DOM that absorbs ultraviolet and visible light, and differences in the fluorescence spectral characteristics of humic-like (terrigenous) and protein-like (microbially-derived) CDOM allow for tracing the relative contributions of allochthonous or autochthonous carbon sources, respectively, in water. We investigated CDOM in karst-aquifer well and spring waters along the fresh- to saline-water transition zone of the Edwards Aquifer, Central Texas, over a four year period. The groundwater fluorescence spectral characteristics were distinct from those generally observed in surface waters and soil porewaters. The dominant source of organic carbon in the aquifer waters may be a product of chemolithoautotrophic primary production occurring in situ. It is possible that the absence of a strong terrestrial CDOM signature may be due to filtering effects in the epikarst or rapid utilization by heterotrophs in the aquifer. Our results indicate that intense recharge following periods of drought may influence the intensity of microbial activity, either due to an influx of DOM or nutrients from the surface that was not quantified by our analyses or because of increased in situ autotrophic activity, or both. The variable contributions of allochthonous and autochthonous DOM during and after recharge events call into question whether karst aquifer ecosystems are necessarily dependent on allochthonous organic matter.

EVIDENCE FROM CERNA VALLEY CAVES (SW ROMANIA) FOR SULFURIC ACID SPELEOGENESIS: A MINERALOGICAL AND STABLE ISOTOPE STUDY, 2009, Onac B. , Sumrall J. , Wynn J. , Tamas T. , Dormiceanu V. , Cizma? C.

Over 30 caves are known to develop in the Jurassic and Cretaceous limestone that outcrops along the lower part of the Cerna Valley and its tributaries in southwestern Romania. There are three features that strike observers when entering most of these caves: a variety of sulfate speleothems, large amounts of bat guano (both fossil and fresh), and unusually high cave temperatures. Such thermal anomalies are rather uncommon in the ordinary cave environment. Along Cerna Valley, however, one can measure temperatures (in some cavities) as high as 40ºC. This situation is due to (i) presence of thermal water pools, (ii) hot water flowing along cave passages, (iii) hot steam rising up fractures from depth.
Seventy-four mineral samples were collected from eight caves in the Cerna Valley. These were investigated by means of X-ray diffraction, scanning electron microscope, and electron microprobe analyses. The minerals identified so far in Sălitrari, Ion Barzoni, Sălitrari 2, Diana, Adam, Despicătura, and Grota cu Aburi caves, are: calcite [CaCO3], aragonite [CaCO3], gypsum [CaSO4•2H2O], anhydrite [CaSO4], pickeringite [MgAl2(SO4)4•22H2O], halotrichite [Fe2+Al2(SO4)4•22H2O], kalinite [KAl(SO4)2•11H2O], melanterite [FeSO4•7H2O], apatite- (Ca(OH) [Ca5(PO4)3(OH)], brushite [CaHPO4•2H2O], darapskite [Na3(SO4)(NO3)•H2O], and nitratine [NaNO3]. The phosphates and nitrates (except for darapskite) were precipitated in a typical vadose environment from reactions between phosphoric solutions supplied by bat guano and limestone bedrock. Most of the sulfates and darapskite are the result of sulfuric acid speleogenesis.
In addition, sulfur isotope measurements (δ34S) on sulfate speleothems and spring waters were undertaken to determine the origin of cave sulfates (i.e., vadose, hypogene, bacteriogenic, etc.). The isotope measurements in the springs show sulfide δ34S ranges from -21.9‰ to 24.0‰ with a mean value of 6.6‰ (n=9), whereas the sulfate δ34S ranges from 16.6‰ to 71.3‰ with a mean value of 30.1‰ (n=10).
Three populations of sulfur isotope values (negative, near zero, and positive) were found in the caves. Samples from Barzoni Cave (the most distant cave from any modern thermal spring) are extremely depleted (-23 to -28‰). Sulfide values of the nearest springs are approximately -20‰. In Sălitrari Cave, the range of values was from -19.8 to +6.5‰. It is more than likely a reflection of the increase in completeness of the reduction of sulfate. The δ34S value of gypsum in Grota cu Aburi (active H2S hot steam cave) was 6.5‰. This value is similar to the sulfur isotopic composition measured in darapskite from Sălitrari Cave; thus, probably documenting earlier sulfuric acid activity in the latter cave.
The final population of caves, especially Despicătura and Diana caves, has enriched sulfur isotope values, which correspond well to the sulfide values of nearby springs. Diana Cave from which Diana 3 spring originates has a sulfide isotopic composition of +19‰, which is approximately the value of the mean of the cave sulfates from Diana Cave. This shows that the cave sulfate isotopic value is controlled by the sulfide, which (after being oxidized) reacts with limestone/marls to produce gypsum or other sulfate minerals.


HYDROGEOLOGICAL FUNCTIONING OF A KARST AQUIFER DEDUCED FROM HYDROCHEMICAL COMPONENTS AND NATURAL ORGANIC TRACERS PRESENT IN SPRING WATERS. THE CASE OF YEDRA SPRING (SOUTHERN SPAIN), 2010, Mudarra M. , Andreo B.
The major chemical parameters, TOC and natural fluorescence of yedra spring, Malaga province, southern Spain were monitored from April 2008 to March 2009. The electrical conductivity and the concentrations of most major ions decreased following recharge periods. The TOC and NO3, representing tracers from the soil that infiltrate through the unsaturated zone, were found to vary inversely with the Mg2+ content, which is a natural indicator of groundwater residence time. Furthermore, a strong, direct relation was found between TOC and the natural fluorescence associated with humic and fulvic acids. Both parameters respond similarly to rainfall events, exhibiting significant increases during recharge followed by reductions during recession. This relation means that TOC mainly originates from organic acids. The results document rapid infiltration processes with a lag of less than one day following rainfall, which is typical of a karst aquifer with conduit flow, rapid drainage and limited natural regulation. The combined use of conventional hydrochemical parameters and natural organic tracers facilitates aquifer characterization and validates the vulnerability to contamination.

Springs, 2012, White, William B.

Springs are localized points where groundwater returns to surface routes. Karst springs drains integrated conduit and fracture networks and often have very high discharges. Most spring waters have temperatures very close to local seasonal averages but some waters rise from depths and produce thermal springs. Spring discharges tend to respond rapidly to storm recharge. The hydrographs of springs can be analyzed to provide information on the conduit system that feeds the spring. Karst springs are highly vulnerable to contamination from surface sources. Great caution must be exercised before using karst springs as water supplies.


Radionuclides as natural tracers for the characterization of fluids in regional discharge areas, Buda Thermal Karst, Hungary, 2012, Eross A. , Mdlszonyi J. , Surbeck H. , Horvth . , Goldscheider N. , Csoma A. .

The Buda Thermal Karst (Budapest, Hungary) developed in the regional discharge zone of a carbonate rock aquifer system. High radioactivity of the spring waters has already been reported in 1912, but there has been no detailed study and no consistent explanation for its origin. In this area mixing of cold and hot karst waters was hitherto assigned to be responsible for cave formation. However, the dissimilarity of the discharging waters within Budapest (in the North: Rozsadomb; in the South: Gellert Hill), may suggest also different cave forming processes. The application of radionuclides as natural tracers represents a novel approach to investigate these questions. For this study, we used uranium, radium and radon to identify mixing of fluids in the Buda Thermal Karst system and to infer the temperature and chemical composition of the end members. Chloride as a conservative component allowed the mixing ratios for the sampled waters to be calculated. Their fluid compositions were modeled and through the comparison of modeled and measured values, the end members were validated. As the result of this study, it was possible to characterize the mixing end members for the Rozsadomb area, whereas for the Gellert Hill discharge zone, mixing components could not be identified with the aid of radionuclides. Therefore, it is suggested that different processes are responsible for cave formation in these areas. In the Rozsadomb area, structurally-controlled mixing is the dominant cave forming process, whereas in the Gellert Hill area, due to the lack of mixing members, other processes have to be found, which are responsible for the formation of the caves, such as retrograde calcite solubility and/or geogenic acids, such as H2S. The application of radionuclides thus further supported the differences between the two study areas. This study identified moreover the source of elevated radon content of the waters in the Gellert Hill area in form of iron-hydroxide precipitates that accumulate in the spring caves. These precipitates are highly efficient in adsorbing radium, which generates radon by alpha decay, and hence act as local radon source for the waters. In this study we showed that uranium, radium and radon naturally occurring in groundwater can be used to characterize fluids of different flow systems in regional discharge areas owing to the contrasting geochemical behaviors of these elements


HYPOGENE SULFURIC ACID SPELEOGENESIS AND RARE SULFATE MINERALS (FIBROFERRITE, JAROSITE SUBGROUP) BAUME GALINIERE CAVE (ALPES-DE-HAUTE-PROVENCE, FRANCE), 2013, Audra P. Gá, Zquez F. Rull F. Bigot J. Y. Camus H.

 

The oxidation of sulfide sources (H2S gas, pyrite, hydrocarbons) produces sulfuric acid that strongly reacts with bedrock, causing limestone dissolution and complex interactions with other minerals. This type of cave development, known as sulfuric acid speleogenesis, is a subcategory of hypogenic speleogenesis, where aggressive water rises from depth. It also produces uncommon minerals, mainly sulfates. Baume Galinière is located in Southern France, in the Vaucluse spring watershed. This small maze cave displays characteristic features such as corrosion notches, calcite dikes and iron crusts, and sulfate minerals. Thirteen minerals were identified, including elemental sulfur, calcite, quartz, pyrite, goethite, gypsum, fibroferrite, plus all of the six members of the jarosite subgroup (jarosite, argentojarosite, ammoniojarosite, hydroniumjarosite, natrojarosite, plumbojarosite). The Baume Galinière deposits are the first documented cave occurrence of argentojarosite and the second known occurrence of plumbojarosite, hydronium jarosite, ammoniojarosite, and fibroferrite. Together with other hypogenic caves in the Vaucluse watershed, Baume Galinière Cave owes its origin in buried conditions to deep water rising along major faults, mixing with meteoric water at the contact of the karst aquifer and overlying impervious cover, and causing pyrite deposition. Sulfuric acid speleogenesis occurred later after base level drop, when the cave arrived in shallow phreatic then in vadose zone, with oxidation of pyrites involving sulfidic gases. Attenuated oxidation is still occurring through condensation of incoming air from outside. Baume Galinière Cave records the position of the paleo-cover and documents its retreat in relationship to valley incision caused by uplift and tilting of the Vaucluse block during Neogene.


Hypogene Sulfuric Acid Speleogenesis and rare sulfate minerals in Baume Galini`ere Cave (Alpes-de-Haute-Provence, France). Record of uplift, correlative cover retreat and valley dissection, 2015, Audra Philippe, Gґazquez Fernando, Rull Fernando, Bigot Jeanyves, Camus Hubert

The oxidation of hydrocarbons and sulfide sources (H2S, pyrite) produces sulfuric acid that strongly reacts with bedrock, causing limestone dissolution and complex interactions with other minerals from the bedrock or from cave fillings, mainly clays. This type of cave development, known as Sulfuric Acid Speleogenesis (SAS), is a subcategory of hypogene speleogenesis, where aggressive water rises from depth. It also produces uncommon minerals, mainly sulfates, the typical byproducts of SAS. Baume Galinière is located in Southern France, in the Vaucluse spring watershed. This small maze cave displays characteristic SAS features such as corrosion notches, calcite geodes, iron crusts, and various sulfate minerals. Sulfur isotopes of SAS byproducts (jarosite and gypsum) clearly show they derive from pyrite oxidation. Using XRD and micro-Raman spectroscopy, thirteen minerals were identified, including elemental sulfur, calcite, quartz, pyrite, goethite, gypsum, fibroferrite, plus all of the six members of the jarosite subgroup (jarosite, argentojarosite, ammoniojarosite, hydroniumjarosite, natrojarosite, plumbojarosite). The Baume Galinière deposits are the first documented cave occurrence of argentojarosite and the second known occurrence of plumbojarosite, hydronium jarosite, ammoniojarosite, and fibroferrite. In the Vaucluse watershed, there were numerous upwellings of deep water along major faults, located at the contact of the karstic aquifer and the overlying impervious covers. The mixing of deep and meteoric waters at shallow depths caused pyrite depositions in numerous caves, including Baume Galinière. Sulfuric acid speleogenesis occurred later after base-level drop, when the cave was under shallow phreatic conditions then in the vadose zone, with oxidation of pyrites generating sulfuric acid. Attenuated oxidation is still occurring through condensation of moisture from incoming air. Baume Galinière Cave records the position of the semi-impervious paleo-cover and documents its retreat in relationship to valley incision caused by uplift and tilting of the Vaucluse block during the Neogene.


Hypogene Sulfuric Acid Speleogenesis and rare sulfate minerals in Baume Galinière Cave (Alpes-de-Haute-Provence, France). Record .., 2015, Audra P. , Gázquez F. , Rull F. , Bigot J. Y. , Camus H.

The oxidation of hydrocarbons and sulfide sources (H2S, pyrite) produces sulfuric acid that strongly reacts with bedrock, causing limestone dissolution and complex interactions with other minerals from the bedrock or from cave fillings, mainly clays. This type of cave development, known as Sulfuric Acid Speleogenesis (SAS), is a subcategory of hypogene speleogenesis, where aggressive water rises from depth. It also produces uncommon minerals, mainly sulfates, the typical byproducts of SAS. Baume Galinière is located in Southern France, in the Vaucluse spring watershed. This small maze cave displays characteristic SAS features such as corrosion notches, calcite geodes, iron crusts, and various sulfate minerals. Sulfur isotopes of SAS byproducts (jarosite and gypsum) clearly show they derive from pyrite oxidation. Using XRD and micro-Raman spectroscopy, thirteen minerals were identified, including elemental sulfur, calcite, quartz, pyrite, goethite, gypsum, and fibroferrite, plus all of the six members of the jarosite subgroup (jarosite, argentojarosite, ammoniojarosite, hydroniumjarosite, natrojarosite, plumbojarosite). The Baume Galinière deposits are the first documented cave occurrence of argentojarosite and the second known occurrence of plumbojarosite, hydronium jarosite, ammoniojarosite, and fibroferrite. In the Vaucluse watershed, there were numerous upwellings of deep water along major faults, located at the contact of the karstic aquifer and the overlying impervious covers. The mixing of deep and meteoric waters at shallow depths caused pyrite depositions in numerous caves, including Baume Galinière. Sulfuric Acid Speleogenesis occurred later after base-level drop, when the cave was under shallow phreatic conditions then in the vadose zone, with oxidation of pyrites generating sulfuric acid. Attenuated oxidation is still occurring through condensation of moisture from incoming air. Baume Galinière Cave records the position of the semi-impervious paleo-cover and documents its retreat in relationship to valley incision caused by uplift and tilting of the Vaucluse block during the Neogene.


Results 16 to 29 of 29
You probably didn't submit anything to search for