MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_left.php on line 5
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That mining of ground water is the permanent depletion of ground-water reserves [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_right.php on line 7
What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for transmissivity (Keyword) returned 34 results for the whole karstbase:
Showing 16 to 30 of 34
Groundwater-flow modeling in the Yucatan karstic aquifer, Mexico, 2002,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Gonzalezherrera R. , Pinto I. , Gamboavargas J. ,
The current conceptual model of the unconfined karstic aquifer in the Yucatan Peninsula, Mexico, is that a fresh-water lens floats above denser saline water that penetrates more than 40 km inland. The transmissivity of the aquifer is very high so the hydraulic gradient is very low, ranging from 7-10 mm/km through most of the northern part of the peninsula. The computer modeling program AQUIFER was used to investigate the regional groundwater flow in the aquifer. The karstified zone was modeled using the assumption that it acts hydraulically similar to a granular, porous medium. As part of the calibration, the following hypotheses were tested: (1) karstic features play an important role in the groundwater-flow system; (2) a ring or belt of sinkholes in the area is a manifestation of a zone of high transmissivity that facilitates the channeling of groundwater toward the Gulf of Mexico; and (3) the geologic features in the southern part of Yucatan influence the groundwater-flow system. The model shows that the Sierrita de Ticul fault, in the southwestern part of the study area, acts as a flow barrier and head values decline toward the northeast. The modeling also shows that the regional flow-system dynamics have not been altered despite the large number of pumping wells because the volume of water pumped is small compared with the volume of recharge, and the well-developed karst system of the region has a very high hydraulic conductivity

Localization of saturated karst aquifer with magnetic resonance sounding and resistivity imagery, 2003,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Vouillamoz J. M. , Legchenko A. , Albouy Y. , Bakalowicz M. , Baltassat J. M. , Alfares W. ,
To answer one of the main questions of hydrogeologists implementing boreholes or working on pollution questions in a karst environment-i.e., where is the ground water?-numerous tools including geophysics are used. However, the contribution of geophysics differs from one method to the other. The magnetic resonance sounding (MRS) method has the advantage of direct detection of ground water over other geophysical methods. Eight MRSs were implemented over a known karst conduit explored and mapped by speleologists to estimate the MRS ability to localize ground water. Two direct current resistivity imageries (DC-2D imagery) were also implemented to check their capability to map a known cave. We found that the MRS is a useful tool to locate ground water in karst as soon as the quantity of water is enough to be detected. The threshold quantity is a function of depth and it was estimated by forward modeling to propose a support graph to hydrogeologists. The measured MRS's signals could be used to calculate transmissivity and permeability estimators. These estimators were used to map and to draw a cross section of the case study site, which underline accurately the known karst conduit location and depth. We also found that the DC-2D imagery could underline the karst structures: It was able to detect the known cave through its associated faults. We prepared a computer simulation to check the depth of such a cave to induce resistivity anomaly which could be measured in similar conditions

Simulation of the development of karst aquifers using a coupled continuum pipe flow model - art. no. 1057, 2003,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Liedl R. , Sauter M. , Huckinghaus D. , Clemens T. , Teutsch G. ,
[1] This paper is intended to provide insight into the controlling mechanisms of karst genesis based on an advanced modeling approach covering the characteristic hydraulics in karst systems, the dissolution kinetics, and the associated temporal decrease in flow resistance. Karst water hydraulics is strongly governed by the interaction between a highly conductive low storage conduit network and a low-conductive high-storage rock matrix under variable boundary conditions. Only if this coupling of flow mechanisms is considered can an appropriate representation of other relevant processes be achieved, e.g., carbonate dissolution, transport of dissolved solids, and limited groundwater recharge. Here a parameter study performed with the numerical model Carbonate Aquifer Void Evolution (CAVE) is presented, which allows the simulation of the genesis of karst aquifers during geologic time periods. CAVE integrates several important features relevant for different scenarios of karst evolution: (1) the complex hydraulic interplay between flow in the karst conduits and in the small fissures of the rock matrix, (2) laminar as well as turbulent flow conditions, (3) time-dependent and nonuniform recharge to both flow systems, (4) the widening of the conduits accounting for appropriate physicochemical relationships governing calcite dissolution kinetics. This is achieved by predefining an initial network of karst conduits ('protoconduits'') which are allowed to grow according to the amount of aggressive water available due to hydraulic boundary conditions. The increase in conduit transmissivity is associated with an increase in conduit diameters while the conductivity of the fissured system is assumed to be constant in time. The importance of various parameters controlling karst genesis is demonstrated in a parameter study covering the recharge distribution, the upgradient boundary conditions for the conduit system, and the hydraulic coupling between the conduit network and the rock matrix. In particular, it is shown that conduit diameters increase in downgradient or upgradient direction depending on the spatial distribution (local versus uniform) of the recharge component which directly enters the conduit system

Analytical and numerical models to explain steady rates of spring flow, 2004,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Swanson S. K. , Bahr J. M. ,
Flow from some springs in former glacial lakebeds of the Upper Midwest is extremely steady throughout the year and does not increase significantly after precipitation events or seasonal recharge. Analytical and simplified numerical models of spring systems were used to determine whether preferential ground water flow through high-permeability features in shallow sandstone aquifers could produce typical values of spring discharge and the unusually steady rates of spring flow. The analytical model is based on a one-dimensional solution for periodic ground water flow. Solutions to this model suggest that it is unlikely that a periodic forcing due to seasonal variations in areal recharge would propagate to springs in a setting where high-permeability features exist. The analytical model shows that the effective length of the aquifer, or the length of flowpaths to a spring, and the total transmissivity of the aquifer have the greatest potential to impact the nature of spring flow in this setting. The numerical models show that high-permeability features can influence the magnitude of spring flow and the results demonstrate that the lengths of ground water flowpaths increase when high-permeability features are explicitly modeled, thus decreasing the likelihood for temporal variations in spring flow

Matrix permeability of the confined Floridan Aquifer, Florida, USA, 2004,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Budd Da, Vacher Hl,
The Upper Floridan Aquifer of peninsular Florida retains most of its depositional porosity and, as a result, is a multi-porosity aquifer: double porosity (fractured porous aquifer) downdip where the aquifer is confined, and triple porosity (karstic, fractured porous aquifer) in the updip, unconfined region. Matrix permeability in the confined region varies in the range <10(-14.41)-10(-11.1) m(2), as determined by 12,000 minipermeameter measurements on 1,210 m of slabbed core. Limestones divide into 13 textural classes and dolomites into two. Depositional facies (textural class) strongly correlates with matrix permeability. As a result, the facies architecture of the Eocene and Oligocene carbonates that compose the confined portion of the aquifer controls the lateral and vertical distribution of its matrix transmissivity. The most-permeable facies are grainstones (median k, 10(-12.4) m(2)) and sucrosic dolomites (median k, 10(-12.0) m(2)). Together, they are responsible for &SIM;73% of the matrix transmissivity of the logged cores, although they constitute only &SIM;24% of the thickness. Examination of the flow equations of fractured porous aquifers suggests that the permeability of these two facies is large enough that matrix permeability cannot be discounted in modeling the hydraulics of the double-porosity system. This conclusion likely applies to most, if not all, Cenozoic double-porosity carbonate aquifers, as average matrix and fracture permeabilities in the Floridan Aquifer are similar to other Cenozoic carbonates from around the world

Development and Evolution of Epikarst in Mid-Continent US Carbonates, 2005,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Cooley Tony L. , P. E.

This paper presents the basic elements of a conceptual model for the development of epikarst in US mid-continent, horizontally-bedded carbonates in which flow is largely confined to secondary and tertiary porosity. The model considers the development of epikarst regimes in carbonate sequences beginning shortly after non-carbonate rocks are eroded away to expose the underlying carbonates and follows this through capture of the shallow flow by deeper dissolution conduits with reorientation of the epikarst to a more vertical form. The model does not require an underlying zone of vadose flow and in many cases considers development of such a zone to depend on the water supply provided by prior development of the epikarst. It is not claimed that all epikarsts form in the accordance with this model; rather this paper presents a viable additional model for epikarst formation under appropriate starting conditions. Factors influencing the development of epikarst are a combination of: 1) the pre-karst topography and modifications to this as the system evolves, 2) the original distribution and aperture of fractures as well as the distance and orientation of physically favorable fractures relative to potential discharge points, such as existing dissolutionally-enhanced channels with low head or nearby valleys, 3) character of soil cover as this affects percolation of water to the rock, erodability of the soil, sediment filling of conduits, and transport of sediment 4) variations in availability of dissolutionally aggressive water with time and location, and 5) low solubility layers, such as shale or chert, that promote lateral flow until a penetration point can be found. These interact to form an epikarst and deeper karst system that progressively increases its capacity both by internal improvement of its flow routes and extension into adjacent areas. The availability of water needed to promote dissolution also often has a positive feedback relationship to epikarst, in which locations of most active dissolution modify their vicinity to progressively increase capture of water, which promotes further dissolution. In early stages, lateral flow through the overlying soils and along top-of-rock must dominate the groundwater flow because the relatively intact carbonates have insufficient transmissivity to convey the available recharge through the body of the rock. Top-of-rock runnels developed by a combination of dissolution of their floors and piping erosion of their roofs would carry a significant portion of the flow. Horizontally-oriented epikarst develops with discharge to local drainage. Cutters and pinnacles, collapse-related macropores, and areas of concentrated recharge would begin to form at this stage. Initial downward propagation of this system would occur mostly due to lateral flow. Mixing corrosion could occur in sumps in these lateral flow routes when fresh, percolating rainwater mixes with older water with a higher dissolved load. Should conditions be suitable, leakage from this system promotes the migration of deeper karst conduits into the area by Ewers multi-tiered headward linking. Other sources of water may also bring in such deeper conduits. Once such deeper conduits are present, the epikarst can evolve into a more vertically oriented system, at least in the vicinity of master drains into this deeper system. Former shallow epikarst routes may then plug with sediment. In some areas, deeper systems may never develop due to unfavorable conditions. The epikarst may be the only significant system in these cases. This includes the case of poor karst formers such as interbedded shales and carbonates that may have very shallow horizontal epikarst flow paths that channel shallow subsurface flows.


Structurally complex reservoirs: an introduction, 2007,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Jolley S. J. , Barr D. , Walsh J. J. , Knipe R. J.

Structurally complex reservoirs form a distinct class of reservoir, in which fault arrays  and fracture networks, in particular, exert an over-riding control on petroleum trapping and production  behaviour. With modern exploration and production portfolios commonly held in geologically  complex settings, there is an increasing technical challenge to find new prospects and to  extract remaining hydrocarbons from these more structurally complex reservoirs. Improved  analytical and modelling techniques will enhance our ability to locate connected hydrocarbon  volumes and unswept sections of reservoir, and thus help optimize field development, production  rates and ultimate recovery. This volume reviews our current understanding and ability to model the  complex distribution and behaviour of fault and fracture networks, highlighting their fluid compartmentalizing  effects and storage-transmissivity characteristics, and outlining approaches for predicting  the dynamic fluid flow and geomechanical behaviour of structurally complex reservoirs.  This introductory paper provides an overview of the research status on structurally complex reservoirs  and aims to create a context for the collection of papers presented in this volume and, in doing  so, an entry point for the reader into the subject. We have focused on the recent progress and outstanding  issues in the areas of: (i) structural complexity and fault geometry; (ii) the detection and  prediction of faults and fractures; (iii) the compartmentalizing effects of fault systems and complex  siliciclastic reservoirs; and (iv) the critical controls that affect fractured reservoirs.


Ground-water storage calculation in karst aquifers with alluvium or no-flow boundaries, 2008,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Raeisi E.
The determination of water-budget parameters, such as change in storage and subsurface inflow and outflow, is costly and unreliable due to heterogeneities of karst aquifers. Some karst aquifers may have one or a combination of boundaries such as impermeable formations, alluvial aquifers, and known ground-water divides. Karst water only discharges through springs or flows to the adjacent alluvium. A new procedure is proposed to estimate volume of storage in region during the dry season in these settings. The subsurface inflow and outflow can be measured in the adjacent alluvium using equipotential and flow lines, cross-sectional area, and transmissivity of the alluvial aquifer. The dry season makes it possible to calculate the karst spring recession coefficient and karst aquifer dynamic volume at the beginning and end of the hydrological year. The change of storage is the difference between the dynamic volumes of the karst aquifer at the beginning and end of the hydrological year. The volume of water which flows to the adjacent alluvium or spring is measured by plotting the discharge as a function of time and estimating the recession coefficient at the beginning (or end) of the hydrological year. Known equations are used to calculate the dynamic volume of springs. A general equation is proposed to calculate the dynamic volume of a karst aquifer when there is a combination of springs, and subsurface inflow and outflow from the karst aquifer. The proposed method is applicable to the Zagros Folded Zone in Iran.

Hydrologie du Dvoluy: La Souloise, les Gillardes et le puits des Bans, 2008,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Lismonde B. , Morel L. , Bertochio P.
Hydrology of Dvoluy (French PreAlps): Souloise river, Gillardes springs and puits des Bans: Dvoluy is a karstic system in the French Alps with a size of 165 km2. The basin is drained by a surface river, the Souloise, and an underground collector, reappearing at the springs of Gillardes. A cave, the puits (shaft) des Bans, situated 200 m higher, is an overflow spring of the underground system. We studied the discharge of the surface river and the spring as well as the flooding heights in the Puits des Bans during a year. The linear correlation between the spring discharge at Gillardes and the water elevation in the puits des Bans is surprising for a karstic flow. We propose a hydrologic model of two basins with a narrow link and laminar flow, of which the commmon spring is Gillardes. The obstacle is localised near the important geologic structure named Digne thrust. Some hydrologic properties are developed: hydrologic connections, hydraulic transmissivity, and storage volumes during floods.

Alteration of fractures by precipitation and dissolution in gradient reaction environments: Computational results and stochastic analysis, 2008,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Chaudhuri A. , Rajaram H. , Viswanathan H.

Precipitation and dissolution reactions within fractures alter apertures, which in turn affects their flow and transport properties. Different aperture alteration patterns occur in different flow and reaction regimes, and they are also influenced by preferential flow resulting from spatial variations in the aperture. We consider the alteration of variable-aperture fractures in gradient reaction regimes, where fluids are in chemical equilibrium with a mineral everywhere but precipitation and dissolution are driven by solubility gradients associated with temperature variations. The temperature field is defined by a geothermal gradient corresponding to a conduction-dominated heat transfer regime. Monte Carlo simulations on computer-generated aperture fields vividly illustrate pattern formation resulting from two-way feedback between fluid flow and reactive alteration. In dissolution-controlled systems, distinct dissolution channels develop along the dominant flow direction, while elongated precipitate bodies form perpendicular to the mean flow direction in precipitation-controlled systems. Aperture variability accelerates the increase and decrease of effective transmissivity by dissolution and precipitation, respectively. The dominance of precipitation versus dissolution is determined by the angle between the mean hydraulic gradient and solubility/temperature gradient. Development of pronounced anisotropy with oriented elongate features is the key feature of aperture alteration in gradient reaction regimes. A stochastic analysis is developed, which consistently predicts general trends in the aperture field during reactive alteration, including the mean, variance, and spatial covariance structure. Our results are relevant to understanding the long-term diagenetic evolution of fractures in conduction-dominated heat transfer regimes and related problems such as emplacement of ocean bed methane hydrates.


STYLES OF HYPOGENE CAVE DEVELOPMENT IN ANCIENT CARBONATE AREAS OVERLYING NON-PERMEABLE ROCKS IN BRAZIL AND THE INFLUENCE OF COMPETING MECHANISMS AND LATER MODIFYING PROCESSES, 2009,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Augusto S. Auler

A significant proportion of the karst areas in Brazil develop over ancient cratonic or tectonically stable zones overlying Precambrian quartzites or Archaean crystalline basement (granite, gneiss, schist). In such settings, due to the low transmissivity and highly anisotropic nature of the bedrock, major groundwater flow of regional scale tends to be restricted, and diffuse ascending cross-formational flow into the carbonate is limited to a few favourable input zones. Nevertheless, caves displaying hypogene features occur in several areas, although few contain the full suite of speleogenetic forms commonly found in “classic” better studied areas of Europe and North America. Major known hypogene caves in Brazil tend to be located in zones bordering the more stable cratonic areas, such as in Vazante and Toca da Boa Vista karst areas, where fault zones are likely candidates for providing ascending flow paths towards the carbonate. The absence of transmissive beds above the carbonate limits the existence of outflow routes. Brazilian hypogene caves develop in mostly horizontally bedded or gently dipping bedrock and typically do not display the three-dimensional character of many hypogene caves elsewhere. The speleogenetic role of competing mechanisms such as sulphuric acid dissolution due to pyrite oxidation and condensation corrosion tend to overprint original forms as well as produce similar convergent features.


Characterization of Spatial Heterogeneity in Groundwater Applications , 2009,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Trinchero, Paolo

Heterogeneity is a salient feature of every natural geological formation. In the past decades a large body of literature has focused on the effects of heterogeneity on flow and transport problems. These works have substantially improved the understanding of flow and transport phenomena but still fail to characterize many of the important features of an aquifer. Among them, preferential flows and solute paths, connectivity between two points of an aquifer, and interpretation of hydraulic and tracer tests in heterogeneous media are crucial points that need to be properly assessed to obtain accurate model predictions. In this context, the aim of this thesis is twofold:

· to improve the understanding of the effects of heterogeneity on flow and transport phenomena
· to provide new tools for characterizing aquifer heterogeneity

First, we start by theoretically and numerically examine the relationship between two indicators of flow and transport connectivity. The flow connectivity indicator used here is based on the time elapsed for hydraulic response in a pumping test (e.g., the storage coefficient estimated by the Cooper-Jacob method, Sest). Regarding transport, we select the estimated porosity from the observed breakthrough curve (Φ est) in a forced-gradient tracer test. Our results allow explaining the poor correlation between these two indicators, already observed numerically by Knudby and Carrera (2005).

Second, a geostatistical framework has been developed to delineate connectivity patterns using a limited and sparse number of measurements. The methodology allows conditioning the results to three types of data measured over different scales, namely: (a) travel times of convergent tracer tests, ta, (b) estimates of the storage coefficient from pumping tests interpreted using the Cooper-a Jacob method, S est, and (c) measurements of transmissivity point values, T. The ability of the methodology to properly delineate capture zones is assessed through estimations (i.e. ordinary cokriging) and sequential gaussian simulations based on different sets of measurements.


Third, a novel methodology for the interpretation of pumping tests in leaky aquifer systems, referred to as the double inflection point (DIP) method, is presented. The real advantage of the DIP method comes when it is applied with all the existing methods independently to a test in a heterogeneous aquifer. In this case each method yields parameter values that are weighted differently, and thus each method provides different information about the heterogeneity distribution. In particular, the combination of the DIP method and Hantush method is shown to lead to the identification of contrasts between the local transmissivity in the vicinity of the well and the equivalent transmissivity of the perturbed aquifer volume.

Fourth, the meaning of the hydraulic parameters estimated from pumping test performed in leaky aquifers is assessed numerically within a Monte Carlo framework. A synthetic pumping test is interpreted using three existing methods. The resulting estimated parameters are shown to be space dependent and vary with the interpretation method, since each method gives different emphasis to different parts of the timedrawdown data. Finally, we show that by combining the parameter estimates obtained from the different analysis procedures, information about the heterogeneity of the leaky aquifer system may be inferred.
Fifth, an unsaturated highly heterogeneous waste rock pile is modeled using a simple linear transfer function (TF) model. The calibration of the parametric model provides information on the characteristic time of the flow through the matrix and on the fraction of the water that, within each section, is channeled through the macropores. An analysis of the influence of the scale on the results is also provided showing that at large scales the behavior of the system tends to that of an equivalent matrix reservoir masking the effects of preferential flow.


HYDRAULIC PROPERTIES OF CARBONATE ROCKS FROM SLOVAKIAN BOREHOLE DATABASE, 2010,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Malk P. & vasta J.
Using archival hard copy records on 22,922 wells and hydrogeological boreholes, maintained since 1950s on the territory of Slovak Republic, a spatial database was developed. If possible, each borehole was linked to a certain aquifer or aquifer lithological type, according to its screened interval. Wells with ambiguous position of open casing were excluded from further processing to obtain distinct relation of pumping rate to lithology. Using stored records of hydraulic tests, each pumping rate was processed to obtain uniformly calculated standard specific capacity. These values were subsequently used to reinterpret hydraulic parameters. Based on standardized specific capacity data, estimates of transmissivity (T; in m2s-1) and hydraulic conductivity (K; in ms-1) for each well were calculated and linked to corresponding aquifer type. From these, hydraulic properties of limestones (238 boreholes), dolomites (463 boreholes) and granitoid rocks (96 boreholes) are compared. As anticipated, geometrical mean of transmissivity was low for granitoids (6.5110-5 m2s-1) and one order of magnitude higher for limestones (6.1610-4 m2s-1), due to its enhancement by karstification. The highest observed value of mean transmissivity, two times higher than that found for limestones, was obtained for dolomitic aquifers (1.0410-3 m2s-1). Dolomitic aquifers also show the highest median values of hydraulic conductivity (3.2110-5 ms-1), in one order of magnitude higher than granitoids (2.1010-6 ms-1) and three times higher than limestones (9.4510-6 ms-1). In comparison with limestones, dolomites seem to be slightly more homogeneous in aquifer properties; also several lithological types there show similarities in both T and K. Some limestone lithofacies (Steinalm and Raming), seem to have lower transmissivity and hydraulic conductivity comparing to other limestones types (Dachstein, Gutenstein, Wetterstein). The data on hydraulic properties of all these hard rocks show lognormal statistical distribution and high heterogeneity.

On the formation of collapse dolines: A modelling perspective, 2011,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Gabrovš, Ek Franci, Stepiš, Nik Uroš,

Collapse dolines are among the most striking surface features in karst areas. Although they can be the result of different formation mechanisms, evidence suggests that large collapse dolines form due to chemical and mechanical removal of material at and below the level of groundwater. We have applied a genetic model of a two-dimensional fracture network to calculate the rate of dissolutional bedrock removal in the heavily fractured (crushed) zone intersecting a karst conduit in the phreatic zone. To account for infilling and breakdown processes in the crushed zone two simple rules were added to the basic model: 1) continuous infilling of dissolutionally created voids prevents fractures from growing beyond some limited aperture, although the dissolution proceeds, 2) discontinuous collapsing causes sudden closure of a fracture once some critical aperture has been reached. Both rules limit the transmissivity of the network and the related flow rates. Therefore, the constant head difference between the input and the output points is sustained and the flow remains distributed over the entire crushed zone. Provided that restrictions posed by the two rules permit turbulent flow, dissolution rates also remain high in the entire region. High surface area of water–rock contact and high dissolution rates result in high overall removal rates of rock from the crushed zone, one of the necessary conditions for the formation of large closed depressions. Despite the fact that the model neglects some processes and dynamics that would increase the removal rate, the results suggest that large closed depressions could form in the order of 1 million years.


Revised Hydrogeologic framework for the Floridan Aquifer System in the Northern Coastal Areas of Georgia and Parts of South Carolina, 2011,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Gill H. E. , Williams L. J.

The hydrogeologic framework for the Floridan aquifer system was revised for eight northern coastal counties in Georgia and five coastal counties in South Carolina (fig. 1) as part of a regional assessment of water resources by the U.S. Geological Survey (USGS) Groundwater Resources Program. In this study, selected well logs were compiled and analyzed to determine the vertical and horizontal continuity of permeable zones that make up the aquifer system, and define more precisely the thickness of confining beds that separate individual aquifer zones. The results of the analysis indicate that permeable zones in the Floridan aquifer system can be divided into (1) an upper group of extremely transmissive zones that correlate to the Ocala Limestone in Georgia and the Parkers Ferry Formation in South Carolina, and (2) a lower group of zones of relatively lower transmissivity that correlates to the middle part of the Avon Park formation in Georgia and updip clastic equivalent units of South Carolina (fig. 2). This new subdivision simplifies the hydrogeologic framework originally developed by the USGS in the 1980s and helps to improve the understanding of the physical geometry of the system for future modeling efforts. Revisions to the framework in the Savannah–Hilton Head area are particularly important where permeable beds control the movement of saltwater contamination. The revised framework will enable water-resource managers in Georgia and South Carolina to assess groundwater resources in a more uniform manner and help with the implementation of sound decisions when managing water resources in the aquifer system


Results 16 to 30 of 34
You probably didn't submit anything to search for