MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology

Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That hydraulic head is the height above a datum plane (such as sea level) of the column of water that can be supported by the hydraulic pressure at a given-point in a ground-water system. for a well, the hydraulic head is equal. to the distance between the water level in the well and the datum plane [22].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for fauna (Keyword) returned 407 results for the whole karstbase:
Showing 16 to 30 of 407
Hhlenfauna der Schweiz. Der gegenwrtige Forschungsstand., 1961, Strinati, P(ierre).
[Schweiz]

Ergebnisse der Untersuchungen der unterirdischen Fauna der Sowjetunion, 1961, Birkstein, Y. A.

Untersuchungen ber die Fauna der Hhlenwsser in den Hhlen der Zentralpyrenen, 1961, Chodorowski, A.

Neue Daten ber die Fauna der Hhlen des Kaukasus, 1961, Ljovushkin, S. I.

ber die "Fauna hygropetrica" einiger Hhlen Rumniens, 1961, Orghidan T. , Dumitrescu M. , Georgescu M.

Die Entstehung der Copepodenfauna der unterirdischen Gewsser, 1961, Serban, M.

Hhlenfauna der Schweiz Der gegenwrtige Forschungsstand, 1961, Strinati, P.

Beitrge zur Kenntnis der Spaltenfllungen der Cote d'Or: die Brekzie von Santenay und ihre Fauna, 1961, Chaline, J.

Die Tropfsteinhhlen in der Prfektur Saitama und deren Fauna (Japan)., 1962, Torii, H. S.
[Japan]

Cave Animals and Their Environment, 1962, Richards, Aola M.

Caves can be divided into three distinct regions - the twilight zone, the transitional zone and the troglic zone. The main physical characters of caves - light, air currents, temperature and humidity - are discussed in relation to their effect on cave fauna. Various classifications of cave animals are mentioned, and those of Schiner and Jeannel discussed in detail. The paucity of food in caves, and its effect on the animal population is considered. Mention is made of the loss of secondary sexual characters and seasonal periodicity of breeding among true troglobites. Cave animals have undergone many adaptations to their environment, the most interesting of these being blindness and loss of pigment. Hyper-development of tactile, gustatory, olfactory and auditory organs and general slenderness of body, are correlated with eye degeneration. Several theories on the origin of cave fauna are discussed, and the importance of isolation on the development of cave fauna considered.


Die Tropfsteinhhlen in der Prfektur Saitama und deren Fauna (Japan), 1962, Torii, H. S.

Beitrge zur Hhlenfauna der Provence., 1963, Dobat, K.
[Frankreich,]

The Discovery, Exploration and Scientific Investigation of the Wellington Caves, New South Wales, 1963, Lane Edward A. , Richards Aola M.

Although research has been unable to establish a definite date of discovery for the limestone caves at Wellington, New South Wales, documentary evidence has placed it as 1828. The actual discovery could have been made earlier by soldiers or convicts from the Wellington Settlement, which dated from 1823. Whether the aborigines knew of the cave's existence before 1828 is uncertain, but likely, as in 1830 they referred to them as "Mulwang". A number of very small limestone caves were also discovered about the same time in the nearby Molong area. The Bungonia Caves, in the Marulan district near Goulburn, were first written about a short time later. On all the evidence available at present, the Wellington Caves can be considered to be the first of any size discovered on the mainland of Australia. The Wellington Caves are situated in a low, limestone outcrop about six miles south by road from the present town of Wellington, and approximately 190 miles west-north-west of Sydney. They are at an altitude of 1000 feet, about half a mile from the present bed of the Bell River, a tributary of the Macquarie River. One large cave and several small caves exist in the outcrop, and range in size from simple shafts to passages 200 to 300 feet long. Mining for phosphate has been carried out, resulting in extensive galleries, often unstable, at several levels. Two caves have been lit by electricity for the tourist trades; the Cathedral Cave, 400 feet long, maximum width 100 feet, and up to 50 feet high; and the smaller Gaden Cave. The Cathedral Cave contains what is believed to be the largest stalagmite in the world, "The Altar", which stands on a flat floor, is 100 feet round the base and almost touches the roof about 40 feet above. It appears that the name Cathedral was not applied to the cave until this century. The original names were "The Great Cave", "The Large Cave" or "The Main Cave". The Altar was named by Thomas Mitchell in 1830. See map of cave and Plate. Extensive Pleistocene bone deposits - a veritable mine of bone fragments - were found in 1830, and have been studied by palaeontologists almost continually ever since. These bone deposits introduced to the world the extinct marsupials of Australia, and have a special importance in view of the peculiar features of the living fauna of the continent. The names of many famous explorers and scientists are associated with this history, among the most prominent being Sir Thomas Mitchell and Sir Richard Owen. Anderson (1933) gives a brief outline of why the Wellington Caves fossil bone beds so rapidly attracted world-wide interest. During the 18th and early 19th Century, the great palaeontologist, Baron Georges Cuvier, and others, supposed that the earth had suffered a series of catastrophic changes in prehistoric times. As a result of each of these, the animals living in a certain area were destroyed, the area being repopulated from isolated portions of the earth that had escaped the catastrophe. The Bilical Deluge was believed to have been the most recent. Darwin, during the voyage of the Beagle around the world (1832-37), was struck by the abundance of Pleistocene mammalian fossils in South America, and also by the fact that, while these differed from living forms, and were in part of gigantic dimensions, they were closely related to present-day forms in that continent. Darwin's theory of descent with modification did not reconcile with the ideas of Cuvier and others. As the living mammalian fauna of Australia was even more distinctive than that of South America, it was a matter of importance and excitement to discover the nature of the mammals which had lived in Australia in the late Tertiary and Pleistocene.


Beitrge zur Hhlenfauna der Provence, 1963, Dobat, K.

Notes on recent Fauna Studies in Yorkshire Caves, 1964, Schofield P. C. S.

Results 16 to 30 of 407
You probably didn't submit anything to search for