MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology

Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That nothephreatic is referring to water moving slowly in cavities in the phreatic zone [25].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for volcano (Keyword) returned 42 results for the whole karstbase:
Showing 16 to 30 of 42
Les glaciers de marbre de Patagonie, Chili : un karst subpolaire ocanique de la zone australe, 1999, Maire Richard, Ultima_esperanza_team
The karst areas of Chilean Patagonia have remained virtually unknown until now because of their remoteness and very inhospitable climate. They are mainly located in two islands, Diego de Almagro and Madre de Dios, between latitude 52 and 50 South, with a subpolar and stormy climate "tempered" by heavy oceanic precipitations (7 m/ year). In Diego de Almagro the Permian and Carboniferous limestones and dolomites have been transformed into marbles with lamprophyre dikes through contact metamorphism. Situated in the outer part of the archipelagoes, these long and narrow outcrops (0.5-2km wide) are located between volcano-sedimentary formations of Upper Paleozoic (West) and the Mesozoic Patagonian batholit (East). The corallian paleoreefs are part of an accretionary prism of the Gondwana paleo-continent. The surficial and underground karstification is one of the most spectacular ones in the world. The Karren (lapies) caused by the heavy rains can be 1-4 meter(s) wide and several hundred meters long for the solution runnels. Moreover, we can often observe solution karrens both due to rain and wind direction: flat karren (horizontal laminar flow), cascading ripples (sloping laminar flow) and profiled solution forms. The surficial solution velocity is about 3 mm/50 years (from old painting traces near the quarry of Guarello, Madre de Dios); and the lamprophyres dikes (Diego de Almagro) put in relief through corrosion indicate a 40-60 cm surficial solution since the melting of pleistocene glaciers.

Microbiology and geochemistry in a hydrogen-sulphide-rich karst environment, 2000, Hose Louise D. , Palmer Arthur N. , Palmer Margaret V. , Northup Diana E. , Boston Penelope J. , Duchene Harvey R. ,
Cueva de Villa Luz, a hypogenic cave in Tabasco, Mexico, offers a remarkable opportunity to observe chemotrophic microbial interactions within a karst environment. The cave water and atmosphere are both rich in hydrogen sulphide. Measured H2S levels in the cave atmosphere reach 210 ppm, and SO2 commonly exceeds 35 ppm. These gases, plus oxygen from the cave air, are absorbed by freshwater that accumulates on cave walls from infiltration and condensation. Oxidation of sulphur and hydrogen sulphide forms concentrated sulphuric acid. Drip waters contain mean pH values of 1.4, with minimum values as low as 0.1.The cave is fed by at least 26 groundwater inlets with a combined flow of 200-300 l/s. Inlet waters fall into two categories: those with high H2S content (300-500 mg/l), mean PCO2=0.03-0.1 atm, and no measurable O2; and those with less than 0.1 mg/l H2S, mean PCO2=0.02 atm, and modest O2 content (up to 4.3 mg/l). Both water types have a similar source, as shown by their dissolved solid content. However, the oxygenated water has been exposed to aerated conditions upstream from the inlets so that original H2S has been largely lost due to outgassing and oxidation to sulphate, increasing the sulphate concentration by about 4%. Chemical modelling of the water shows that it can be produced by the dissolution of common sulphate, carbonate, and chloride minerals.Redox reactions in the cave appear to be microbially mediated. Sequence analysis of small subunit (16S) ribosomal RNA genes of 19 bacterial clones from microbial colonies associated with water drips revealed that 18 were most similar to three Thiobacilli spp., a genus that often obtains its energy from the oxidation of sulphur compounds. The other clone was most similar to Acidimicrobium ferrooxidans, a moderately thermophilic, mineral-sulphide-oxidizing bacterium. Oxidation of hydrogen sulphide to sulphuric acid, and hence the cave enlargement, is probably enhanced by these bacteria.Two cave-enlarging processes were identified. (1) Sulphuric acid derived from oxidation of the hydrogen sulphide converts subaerial limestone surfaces to gypsum. The gypsum falls into the cave stream and is dissolved. (2) Strongly acidic droplets form on the gypsum and on microbial filaments, dissolving limestone where they drip onto the cave floors.The source of the H2S in the spring waters has not been positively identified. The Villahermosa petroleum basin within 50 km to the northwest, or the El Chichon volcano [small tilde]50 km to the west, may serve as source areas for the rising water. Depletion of 34S values (-11.7[per mille sign] for sulphur stabilized from H2S in the cave atmosphere), along with the hydrochemistry of the spring waters, favour a basinal source

Hydrochemistry of the Cesme geothermal area in western Turkey, 2001, Gemici U, Filiz S,
Hydrochemical characterization of thermal waters discharged from springs and wells in the Cesme geothermal area show that there are two groups. One is of thermal waters from a lower aquifer composed of Triassic karst limestones, which are the main potential reservoir of the area. They are of Na-Cl type and between 37 and 62degreesC and have total dissolved solids (TDS) with around 35 000 mg/l. The other group are thermal waters derived from an upper aquifer formed by Neogene terrestrial sediments. These have lower discharge temperatures (37-40degreesC) and lower TDS values due to their having mixed with local groundwater before emerging. The isotopic and chemical data shows that the initial aqueous solution is a mixture of modern seawater and meteoric water in various proportions. Enrichment in delta(18)O and deltaD values and tritium contents (8 1 TU) of thermal waters reflect a rapid circulation and the contribution of modern seawater. The thermal waters are undersaturated with respect to gypsum but oversaturated, or around equilibrium, with respect to dolomite and calcite. Several chemical geothermometry techniques applied to Cesme geothermal waters gave estimated reservoir temperatures of around 85-100degreesC. (C) 2001 Elsevier Science B.V. All rights reserved

Miocene phreatomagmatic volcanism at Tihany (Pannonian Basin, Hungary), 2001, Nemeth K. , Martin U. , Harangi S. ,
A late Miocene (7.56 Ma) maar volcanic complex (Tihany Maar Volcanic Complex - TMVC) is preserved in the Pannonian Basin and is part of the Bakony-Balaton Highland Volcanic Field. Base surge and fallout deposits were formed around maars by phreatomagmatic explosions, caused by interactions between water-saturated sediments and alkali basalt magma carrying peridotite Iherzolite xenoliths as well as pyroxene and olivine megacrysts. Subsequently, nested maars functioned as a sediment trap where deposition built up Gilbert-type delta sequences. At the onset of eruption, magma began to interact with a moderate amount of groundwater in the water-saturated sand. As eruption continued phreatomagmatic blasts excavated downward into limestones, providing access to abundant karst water and deeper to sandstones and schist both providing large amount of fracture-filling water, At the surface, this 'wet' eruption led to the emplacement of massive tuff breccias by fall, surge, mudflow and gravity flow deposition. The nature of the TMVC maar eruptions and their deposits appears to depend on the hydrological condition of the karst and/or fracture-filling aquifer, which varies seasonally with rainfall and spring runoff. The West and East Maar volcanoes of TMVC are interpreted to represent low water input from the karst and/or fracture-filling aquifer ('summer vent'), whereas the East Maar is interpreted to have formed when abundant karst and/or fracture-filling water was available ('spring vent'). (C) 2001 Elsevier Science B.V. All rights reserved

Existence of karsts into silicated non-carbonated crystalline rocks in Sahelian and Equatorial Africa, hydrogeological implications, 2002, Willems Luc, Pouclet Andre, Vicat Jean Paul,
Various cavities studied in western Niger and South Cameroon show the existence of important karstic phenomena into metagabbros and gneisses. These large-sized caves resulted from generalized dissolution of silicate formations in spite of their low solubility. Karstification is produced by deep hydrous transfer along lithological discontinuities and fracture net works. The existence of such caves has major implications in geomorphology, under either Sahelian and Equatorial climate, and in hydrogeology and water supply, particularly in the Sahel area. Introduction. - Since a few decades, several karst-like morphologies are described in non-carbonated rocks (sandstones, quartzites, schistes, gneisses...) [Wray, 1997 ; Vicat and Willems, 1998 ; Willems, 2000]. The cave of Guessedoundou in West Niger seems to be due to a large dissolution of metagabbros. The cave of Mfoula, South Cameroon, attests for the same process in gneisses. This forms proof that big holes may exist deeper in the substratum even of non-carbonated silicate rocks. Their size and number could mainly influence the landscape and the hydrogeology, especially in the Sahelian areas. Guessedoundou, a cave into metagabbros in West Niger. - The site of Guessedoundou is located 70 km south-west of Niamey (fig. 1). The cave is opened at the top of a small hill, inside in NNE-SSW elongated pit (fig. 2 ; pl. I A). The hole, 3 to 4 m deep and 20 m large, has vertical walls and contains numerous sub-metric angular blocks. A cave, a few meters deep, comes out the south wall. Bedrocks consist of metagabbros of the Makalondi greenstone belt, a belt of the Palaeoproterozoic Birimian Formations of the West Africa craton [Pouclet et al., 1990]. The rock has a common granular texture with plagioclases, partly converted in albite and clinozoisite, and pyroxenes pseudomorphosed in actinote and chlorite. It is rather fairly altered. Chemical composition is mafic and poorly alkaline (tabl. I). A weak E-W schistosity generated with the epizonal thermometamorphism. The site depression was created along a N010o shear zone where rocks suffered important fracturation and fluid transfers, as shown by its silification and ferruginisation. The absence of human activity traces and the disposition of the angular blocks attest that the pit is natural and was due to the collapse of the roof of a vast cavity whose current cave is only the residual prolongation. To the vertical walls of the depression and at the cave entry, pluridecimetric hemispheric hollows are observed (pl. I B). Smooth morphology and position of these hollows sheltered within the depression dismiss the assumptions of formation by mechanical erosion. In return, these features are typical shape of dissolution processes observed into limestone karstic caves. That kind of process must be invoked to explain the opening of the Guessedoundou cave, in the total lack of desagregation materials. Dissolution of metagabbro occurred during hydrous transfer, which was probably guided by numerous fractures of the shear zone. Additional observations have been done in the Sirba Valley, where similar metabasite rocks constitute the substratum, with sudden sinking of doline-like depressions and evidence of deep cavities by core logging [Willems et al., 1993, 1996]. It is concluded that karstic phenomena may exist even in silica-aluminous rocks of crystalline terrains, such as the greenstones of a Precambrian craton. Mfoula a cave into gneisses in South Cameroon. - The cave of Mfoula is located 80 km north-east of Yaounde (fig. 3). It is the second largest cave of Cameroon, more than 5,000 m3, with a large opening in the lower flank of a deep valley (pl. I C). The cavity is about 60 m long, 30 m large and 5 to 12 m high (fig. 4; pl. I D). It is hollowed in orthogneisses belonging to the Pan-African Yaounde nappe. Rocks exhibit subhorizontal foliation in two superposed lithological facies: the lower part is made of amphibole- and garnet-bearing layered gneisses, and the upper part, of more massive granulitic gneisses. Average composition is silico-aluminous and moderately alkaline (tabl. I). The cave is made of different chambers separated by sub-cylindrical pillars. The ceiling of the main chamber, 6 m in diameter, is dome-shaped with a smooth surface (D, fig. 4). The walls have also a smooth aspect decorated with many hemispherical hollows. The floor is flat according to the rock foliation. They are very few rock debris and detrital fragments and no traces of mechanical erosion and transport. The general inner morphology is amazingly similar to that of a limestone cave. The only way to generate such a cavity is to dissolve the rock by water transfer. To test the effect of the dissolution process, we analysed a clayey residual sampled in an horizontal fracture of the floor (tabl. I). Alteration begins by plagioclases in producing clay minerals and in disagregating the rock. However, there is no more clay and sand material. That means all the silicate minerals must have been eliminated. Dissolution of silicates is a known process in sandstone and quartzite caves. It may work as well in gneisses. To fasten the chemical action, we may consider an additional microbial chemolitotrophe activity. The activity of bacteria colonies is known in various rocks and depths, mainly in the aquifer [Sinclair and Ghiorse, 1989 ; Stevens and McKinley, 1995]. The formation of the Mfoula cave is summarized as follow (fig. 5). Meteoric water is drained down along sub-vertical fractures and then along horizontal discontinuities of the foliation, particularly in case of lithological variations. Chemical and biological dissolution is working. Lateral transfers linked to the aquifer oscillations caused widening of the caves. Dissolved products are transported by the vertical drains. Regressive erosion of the valley, linked to the epeirogenic upwelling due to the volcano-tectonic activity of the Cameroon Line, makes the cavities come into sight at the valley flanks. Discussion and conclusion. - The two examples of the Guessedoundou and Mfoula caves evidence the reality of the karsts in non-carbonated silicated rocks. The karst term is used to design >> any features of the classical karst morphology (caves, dolines, lapies...) where dissolution plays the main genetical action >> [Willems, 2000]. Our observations indicate that (i) the karst genesis may have occurred into any kind of rocks, and (ii) the cave formation is not directly dependent of the present climate. These facts have major consequences to hydrogeological investigations, especially for water supply in Sahelian and sub-desertic countries. Some measurements of water transfer speed across either sedimentary pelitic strata of the Continental terminal or igneous rocks of the substratum in West Niger [Esteves and Lenoir, 1996 ; Ousmane et al., 1984] proved that supplying of aquifers in these silico-aluminous rocks may be as fast as in a karstic limestone. That means the West Niger substratum is highly invaded by a karstic net and may hidden a lot of discontinuous aquifers. The existence of this karst system can be easily shown by morphological observations, the same that are done in karstic limestone regions (abnormally suspended dry valleys, collapses, dolines...). Clearly, this must be the guide for any search of water, even in desertic areas where limestones are absent

Melting of the glacier base during a small-volume subglacial rhyolite eruption: evidence from Blahnukur, Iceland, 2002, Tuffen H. , Pinkerton H. , Mcgarvie D. W. , Gilbert J. S. ,
Although observations of recent volcanic eruptions beneath Vatnajokull, Iceland have improved the understanding of ice deformation and meltwater drainage, little is known about the processes that Occur at the glacier base. We present observations of the products of a small-volume, effusive subglacial rhyolite eruption at Blahnukur. Torfajokull, Iceland. Lava bodies, typically 7 m long, have unusual conical morphologies and columnar joint orientations that suggest emplacement within cavities melted into the base of a glacier. Cavities appear to have been steep-walled and randomly distributed. These features can be explained by a simple model of conductive heat loss during the ascent of a lava body to the glacier base. The released heat melts a cavity in the overlying ice. The development of vapour-escape pipes in the waterlogged, permeable breccias surrounding the lava allows rapid heat transfer between lava and ice. The formed meltwater percolates into the breccias, recharging the cooling system and leaving a steam-filled cavity. The slow ascent rates of intrusive rhyolitic magma bodies provide ample time for a cavity to be melted in the ice above, even during the final 10 m of ascent to the glacier base. An equilibrium Cavity Size is Calculated at which melting, is balanced by creep closure, This is dependent upon the heat input and the difference between glaciostatic and cavity pressure. The cavity sizes inferred from Blahnukur are consistent with a pressure differential of 2-4 MPa, suggesting that the ice was at least 200 m thick. This is consistent with the volcanic stratigraphy, which indicates that the ice exceeded 350 in in thickness, Although this is the first time that a subglacial cavity system of this type has been reconstructed from an ancient volcanic sequence. it shares many characteristics with the modem fim cave system formed by fumarolic melting within the summit crater of Mount Rainier. Washington, At both localities, it appears that localised heating at the glacier base has resulted in heterogeneous melting patterns. Despite the different theological properties of ice and fim, similar patterns of cavity roof deformation are inferred. The development of low-pressure subglacial cavities in regions of high heat nux may influence the trajectory of rising magma, with manifold implications for eruptive mechanisms and resultant subglacial volcanic landforms. (C) 2002 Elsevier Science B.V. All rights reserved

Pa'auhau Civil Defense Cave on Mauna Kea, Hawaii - A lava tube modified by water erosion, 2003, Kempe, S. , Bauer, I. , Henschel, H. V.
In 2000 and 2001, 2 large (1000 m long) cave systems were surveyed on the eastern, heavily eroded flank of Mauna Kea: The Paauhau Civil Defense Cave and the Kukaiau Cave. Both caves occur in the Hamakua Volcanics, 200-250 to 65-70 ka old. They are the first substantial caves documented for lavas of this volcano and the first caves on the island of Hawaii showing extensive morphological signs of water erosion. All observations lead to the conclusion that the Kukaiau Cave is erosional in origin (Kempe & Werner 2003). These observations include: missing lava tube features, a graded hydraulic profile, a base layer along which the major section of the cave seems to have developed, and allophane and halloysite that sealed the primary porosity causing a locally perched water table. In contrast to this feature, the Paauhau Civil Defense Cave originated as a lava tube. This is attested to by the presence of the typical morphologic elements of a lava tube, such as secondary ceilings, linings, base sheets, lava stalactites, and lava falls. Nevertheless, the cave was heavily modified by a stream that entered upslope and traversed much, but not all, of the cave. It left waterfall walls, large plunge pools, stream potholes, scallops, flutes, gravel, rounded blocks, and mud. The finding of water-erosional caves in the lavas of Hawaii offers a new view on deep-seated water courses in volcanic edifices.

Minerogenesis of volcanic caves of Kenya, 2003, Forti Paolo, Galli Ermanno, Rossi Antonio
Kenya is one of the few countries in which karst cavities are scarce with respect to volcanic ones, which are widespread throughout the whole country. The great variability in lava composition allowed the evolution of very different cavities, some of which are amongst the largest lava tubes of the world. As normal for such a kind of cave, the hosted speleothems and cave minerals are scarce but important from the minerogenetic point of view. Anyway up to present no specific mineralogical research have been carried out therein. During the 8th International Symposium on Volcanospeleology, held in Nairobi in February 1998, some of the most important volcanic caves of Kenya have been visited and their speleothems and/or chemical deposits sampled: most of them were related to thick guano deposits once present inside these cavities. Speleothems mainly consisted of opal or gypsum, while the deposits related to guano often resulted in a mixture of sulphates and phosphates. The analyses confirmed the great variability in the minerogenetic mechanisms active inside the volcanic caves, which consequently allow the evolution of several different minerals even if the total amount of chemical deposit is scarce. Among the observed minerals kogarkoite, phillipsite and hydroxyapophyllite, must be cited because they are new cave minerals not only for the lava tubes of Kenya, but also for the world cave environment. The achieved results are compared with the available random data from previous literature in order to allow an updated overview on the secondary cave minerals of Kenya.

Classification, Genesis, and Exploration Guides for Nonsulfide Zinc Deposits, 2003, Hitzman Murray W. , Reynolds Neal A. , Sangster D. F. , Allen Cameron R. , Carman Cris E. ,
Nonsulfide zinc deposits, popularly but incorrectly termed 'zinc oxide' deposits, are becoming attractive exploration targets owing to new developments in hydrometallurgy. They are divided into two major geologic types--supergene and hypogene deposits. Supergene deposits are the most common type of nonsulfide zinc deposit and are distributed worldwide. The vast majority occur in carbonate host rocks owing to the high reactivity of carbonate minerals with the acidic, oxidized, zinc-rich fluids derived from the oxidative destruction of sphalerite-bearing sulfide bodies. Formation of these deposits depends upon the size and mineralogy of the preexisting zinc occurrence, vertical displacement of the water table, rate of water table descent through tectonic uplift and/or arid climatic conditions, wall-rock fracture density, and a suitable neutralizing trap site. Weathering of Mississippi Valley-type and high-temperature carbonate replacement-type zinc deposits may generate significant supergene nonsulfide zinc deposits, but the weathering of pyrite-rich, sedimentary exhalative, and volcanogenic massive sulfide deposits is much less likely to form economic supergene zinc deposits. Three subtypes of supergene nonsulfide zinc deposits are recognized--direct replacement, wall-rock replacement, and residual and karst-fill deposits. Hypogene nonsulfide zinc deposits are more poorly known owing to the paucity of examples; however, two major subtypes are recognized: structurally controlled, replacement bodies and manganese-rich, exhalative(?) stratiform bodies. The structurally controlled bodies contain willemite and variable amounts of sphalerite, are hematitic, and are generally associated with hydrothermal dolomitization. Stratiform, manganese-rich, nonsulfide zinc deposits appear to be end members of a spectrum of deposits that include base metal-poor stratiform manganese deposits and sulfide-dominant Broken Hill-type deposits. Hypogene nonsulfide zinc deposits appear to have formed owing to the mixing of a reduced, low- to moderate-temperature (80{degrees}-200{degrees}C), zinc-rich, sulfur-poor fluid with an oxidized, sulfur-poor fluid

The Geomicrobiology of Ore Deposits, 2005, Southam G. , Saunders James A. ,
Bacterial metabolism, involving redox reactions with carbon, sulfur, and metals, appears to have been important since the dawn of life on Earth. In the Archean, anaerobic bacteria thrived before the Proterozoic oxidation of the atmosphere and the oceans, and these organisms continue to prosper in niches removed from molecular oxygen. Both aerobes and anaerobes have profound effects on the geochemistry of dissolved metals and metal-bearing minerals. Aerobes can oxidize dissolved metals and reduced sulfur, as well as sulfur and metals in sulfide minerals can contribute to the supergene enrichment of sulfide ores, and can catalyze the formation of acid mine drainage. Heterotrophic anaerobes, which require organic carbon for their metabolism, catalyze a number of thermodynamically favorable reactions such as Fe-Mn oxyhydroxide reductive dissolution (and the release of sorbed metals to solution) and sulfate reduction. Bacterial sulfate reduction to H2S can be very rapid if reactive organic carbon is present and can lead to precipitation of metal sulfides and perhaps increase the solubility of elements such as silver, gold, and arsenic that form stable Me-H2S aqueous complexes. Similarly, the bacterial degradation of complex organic compounds such as cellulose and hemicellulose to simpler molecules, such as acetate, oxalate, and citrate, can enhance metal solubility by forming Me organic complexes and cause dissolution of silicate minerals. Bacterially induced mineralization is being used for the bioremediation of metal-contaminated environments. Through similar processes, bacteria may have been important contributors in some sedimentary ore-forming environments and could be important along the low-temperature edges of high-temperature systems such as those that form volcanogenic massive sulfides

The geochemistry of fluids from an active shallow submarine hydrothermal system: Milos island, Hellenic Volcanic Arc, 2005, Valsamijones E. , Baltatzis E. , Bailey E. H. , Boyce A. J. , Alexander J. L. , Magganas A. , Anderson L. , Waldron S. , Ragnarsdottir K. V. ,
Geothermal activity in the Aegean island of Milos (Greece), associated with island-arc volcanism, is abundant both on-and off-shore. Hydrothermal fluids venting from several sites, mainly shallow submarine (up to 10 m), but also just above seawater level in one locality, were sampled over four summer field seasons. Some of the discharging fluids are associated with the formation of hydrothermal edifices. Overall, the main characteristics of the hydrothermal fluids are low pH and variable chlorinity. The lowest recorded pH was 1.7, and chlorinity ranged from 0.1 to 2.5 times that of seawater. The highest fluid temperatures recorded on site were 115 degrees C. Two main types of fluids were identified: low-chlorinity fluids containing low concentrations of alkalis (potassium, lithium, sodium) and calcium, and high concentrations of silica and sulphate; and high-chlorinity fluids containing high concentrations of alkalis and calcium, and lower concentrations of silica and sulphate. The type locality of the high-chlorinity fluids is shallow submarine in Palaeochori, near the cast end of the south coast of the island, whereas the type locality of the low-chlorinity fluids is a cave to the west of Palaeochori. The two fluid types are therefore often referred to as 'submarine' and 'cave' fluids respectively. Both fluid types had low magnesium and high metal concentrations but were otherwise consistently different from each other. The low-chlorinity fluids had the highest cobalt, nickel, aluminium, iron and chromium (up to 1.6 mu M, 3.6 mu M, 1586 mu M, 936 mu M and 3.0 mu M, respectively) and the high-chlorinity fluids had the highest zinc, cadmium, manganese and lead (up to 4.1 mu M, 1.0 mu M, 230 mu M and 32 mu M, respectively). Geochemical modelling suggests that metals in the former are likely to have been transported as sulphate species or free ions and in the latter as chloride species or free ions. Isotopic values for both water types range between delta D -12 to 33 parts per thousand and delta(18)O 1.2 to 4.6 parts per thousand. The range of fluid compositions and isotopic contents indicates a complex history of evolution for the system. Both types of fluids appear to be derived from seawater and thus are likely to represent end members of a single fluid phase that underwent phase separation at depth. Crown Copyright (c) 2005 Published by Elsevier B.V. All rights reserved

Methane discharge into the Black Sea and the global ocean via fluid flow through submarine mud volcanoes, 2006, Wallmann Klaus, Drews Manuela, Aloisi Giovanni, Bohrmann Gerhard,
During the MARGASCH cruise M52/1 in 2001 with RV Meteor we sampled surface sediments from three stations in the crater of the Dvurechenskii mud volcano (DMV, located in the Sorokin Trough of the Black Sea) and one reference station situated 15[no-break space]km to the northeast of the DMV. We analysed the pore water for sulphide, methane, alkalinity, sulphate, and chloride concentrations and determined the concentrations of particulate organic carbon, carbonate and sulphur in surface sediments. Rates of anaerobic oxidation of methane (AOM) were determined using a radiotracer (14CH4) incubation method. Numerical transport-reaction models were applied to derive the velocity of upward fluid flow through the quiescently dewatering DMV, to calculate rates of AOM in surface sediments, and to determine methane fluxes into the overlying water column. According to the model, AOM consumes 79% of the average methane flux from depth (8.9 [middle dot] 10 6[no-break space]mol a- 1), such that the resulting dissolved methane emission from the volcano into the overlying bottom water can be determined as 1.9 [middle dot] 10 6[no-break space]mol a- 1. If it is assumed that all submarine mud volcanoes (SMVs) in the Black Sea are at an activity level like the DMV, the resulting seepage represents less than 0.1% of the total methane flux into this anoxic marginal sea. The new data from the DMV and previously published studies indicate that an average SMV emits about 2.0 [middle dot] 10 6[no-break space]mol a- 1 into the ocean via quiescent dewatering. The global flux of dissolved methane from SMVs into the ocean is estimated to fall into the order of 10 10[no-break space]mol a- 1. Additional methane fluxes arise during periods of active mud expulsion and gas bubbling occurring episodically at the DMV and other SMVs

The Earth Has a Future, 2006, Dutch Si,
An alternative to visualizing geologic time by looking into the past is to look into the future. Even geologically short future time scales completely outstrip our ability to forecast changes in human society, whereas most geologic changes in the same time will be modest. Many events that are infrequent on a human time scale, such as earthquakes and volcanic eruptions, become commonplace on longer time scales, and events that have not occurred in recorded history, such as major ice ages, large meteor impacts, giant pyroclastic eruptions, or collapses of Hawaiian shield volcanoes, become almost inevitable in a million years

Speleogenesis of the Mt. Elgon ?Elephant? Caves, Kenya., 2006, Lundberg, J. And Mcfarlane, D. A.

Volcanogenic karstification of Sistema Zacatn, Mexico, 2006, Gary M. O. , Sharp J. M.

Results 16 to 30 of 42
You probably didn't submit anything to search for