Karst processes dominate most of the geomorphic activity in the Upper Galilee, consisting mainly of dolomites and limestones. Study of the chemical evolution of water passing through the karst hydrologic cycle clearly shows that the major portion of its carbonate solute is gained subaerially and in the upper part of the vadose zone. Most cave and spring water is already saturated with respect to aragonite and calcite.The karst depressions typical to surface morphology are mostly associated with fault-line traces. Their evolution is possible mainly in areas sloping initially less that 5[deg].The absence of evolved caves, representing well-developed karst of an earlier period, is attributed mainly to the marginal climate throughout the past combined with tectonic, and hence hydrologic, instability of the region.The discharge of the karst prings shows clearly dependence on annual precipitation, with a lag of about 2 years of the response to drought or more humid periods. Long-term fluctuations are larger in the smaller T'eo Spring than in the affluent 'Enan Springs.Most of the denuded material is extracted from the region as dissolved load via underground conduits and only small amounts as clastics. Mean long-term denudation is approximately 20 mm/1000 years, averaged for the surface area contributing to the springs.In spite of the above, most topographic forms are shaped by runoff erosion, active during medium to high intensity rainstorms. Solution processes prevail during low to medium rainfall intensities, while different parts of the region are denuded at similar rates. Even in karst depressions, erosion becomes dominant after their bottoms are covered by almost impervious terra-rossa mantle
A geomorphological study of the east coast of Andros (Fresh Creek area) shows the existence of a paleotopography represented by low-altitude hills (few metres). This paleotopography is protected by the presence of a calcitic Quaternary crust which covers Pleistocene calcarenite.In the western part of the area, there are long woody axes, oriented NE-SW, parallel to the channels of the creek. They end at two kilometres from the coast, along which is a second kind of lower hills, orthogonal to the first.The first axes can be interpreted as megaripples as seen at the present time on modern deposits (on the Great Bahama Bank) and fossilized by the upper crust. The second direction is made by accretion ripples along the coast.The surface of the Bahamian calcarenite has been studied. The Bahamian karst presents two topographical forms: “blue holes” like those outside the island, which are 60-80 m in diameter and both sparse and deep; and “washtub” dolines; these are numerous and shallow, and, from low altitude, exhibit a honeycombed aspect on the surface. This karstic topography with dolines and blue holes is also seen through the water of the Creek the hard bottom of which is covered only here and there with a few centimetres of sediments. Hence, there is a submerged karstic topography, made of the same elements as the aerial karst, but submerged by the Holocene transgression. The present karstic relief, in relation with the different eustatic levels of the Quaternary, has begun 120,000 years ago, according to the isotopic ages, and might be composed by different steps, difficult to show now, in the topography.The blue holes in the interior of the island of young and little evolved karst, were formed more by solution than by collapse of the karstic caves, because of the absence of a real river to drain the Andros shelf at the time of low sea levels. Blue holes of the inside of the island, as they are called, with submarine openings, have the same salinity as the water of the creek (17.5 g/l). The dolines with very low salinity (0.7 g/l to 3.8 g/l) are filled with stromatolites and charophytes, slowly forming sediments made up essentially of high-magnesian calcite.It seems that the Andros Island karst can be compared with that of the Yucatan, where there are round and deep open pits, called cenote, of which the Bahamian equivalent would be the blue holes which were drowned by the Holocene transgression.ResumeSur l'ile Andros, zone emergee du Grand Banc de Bahama, l'auteur montre l'existence d'une paleotopographie comprenant deux categories de rides d'orientation differente et semblant fossilisee par une croute calcitique recente et l'existence d'un karst aux formes jeunes, bien qu'heritage d'un karst holocene en voie de submersion. Ces formes sont des “blue holes” ou trous bleus circulaires (60 a 80 m de diametre) et peu nombreux, et des dolines, dites en baquet. Dans ces dolines se deposent actuellement des croutes stromatolithiques calcitiques dont l'etude est faite par diffractometrie de rayons X et microscopie electronique a balayage
The Transvaal Karst is a world important example of a Karst developed on a very old dolomite. Its unique character is due to the composition of the rock and history of development. The dissolution of the dolomite is interesting and has an important effect on the character of the caves developed. The caves preserved in this area include the longest known in South Africa and are perhaps among the largest dolomite systems known in the world. They are very old and in some cases contain important palaeontological deposits (Australopithecine fauna). The caves to various degrees are in a state of de-generation, having been exposed for a very long period above the water-table. For the greater part of the Karst area, aggressive vadose waters, and long exposure has resulted in the accumulation of a thick covering of residual material. The plateau-like geomorphology and low rainfalls has prevented physical erosion and significant removal of this debris from the land surface. The caves themselves are often characterized by collapse and in general lack of formations. Massive calcite formation in the caves is usually partly or nearly completely redissolved and are relics of past colder climatic periods with winter rains. Formations active now are small, usually delicate and often due directly to evaporation. The heavy mantle of residual debris preserved under some of the more ancient of South African landsurface relics (the African Surface) poses a serious economic problem of stability, with mans' utilization of the environment. A greater understanding of the Karst, its evolution and properties is thus of considerable practical importance.