MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology

Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 5
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That bed, upper confining is impermeable bed overlying an aquifer [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 7
What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for duration (Keyword) returned 66 results for the whole karstbase:
Showing 16 to 30 of 66
Magnetostratigraphy of Cueva del Aleman, Isla de Mona, Puerto Rico and the Species Duration of Audubons shearwater, 1998,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Panuska, B. C. , Mylroie, J. M. , Armentrout, D. , Mcfarlane, D.
Magnetostratigraphic analysis of deposits exposed in Cueva del Aleman shows two reversed and two normal chronozones. The lower normal polarity event is observed in a clastic dike and probably predates initial cave formation. Sediments deposited inside the cave proper show a R-N-R sequence and probably date to at least 1.8 Ma. A fossiliferous clastic dike contains normal polarity with an overlying reversed magnetozone. Audubons Shearwater (bird) bones occur in the dike, which is tentatively correlated with the lower N polarity zone predating cave formation. If this correlation is correct, the Audubons Shearwater (Puffinus lherminieri) range can be extended back to at least 1.8 Ma, the Olduvai subchron

Mapping Chicxulub crater structure with gravity and seismic reflection data, 1998,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Hildebrand A. R. , Pilkington M. , Ortizaleman C. , Chavez R. E. , Urrutiafucugauchi J. , Connors M. , Granielcastro E. , Camarazi A. , Halpenny J. F. , Niehaus D. ,
Aside from its significance in establishing the impact-mass extinction paradigm, the Chicxulub crater will probably come to exemplify the structure of large complex craters. Much of Chicxulub's structure may be mapped' by tying its gravity expression to seismic-reflection profiles revealing an [~]180 km diameter for the now-buried crater. The distribution of karst topography aids in outlining the peripheral crater structure as also revealed by the horizontal gradient of the gravity anomaly. The fracturing inferred to control groundwater flow is apparently related to subsidence of the crater fill. Modelling the crater's gravity expression based on a schematic structural model reveals that the crater fill is also responsible for the majority of the negative anomaly. The crater's melt sheet and central structural uplift are the other significant contributors to its gravity expression. The Chicxulub impact released [~]1.2 x 1031 ergs based on the observed collapsed disruption cavity of [~]86 km diameter reconstructed to an apparent disruption cavity (Dad) of [~]94 km diameter (equivalent to the excavation cavity) and an apparent transient cavity (Dat) of [~]80 km diameter. This impact energy, together with the observed [~]2 x 1011 g global Ir fluence in the Cretaceous-Tertiary (K-T) fireball layer indicates that the impactor was a comet estimated as massing [~]1.8 x 1018 g of [~]16.5 km diameter assuming a 0.6 gcm-3 density. Dust-induced darkness and cold, wind, giant waves, thermal pulses from the impact fireball and re-entering ejecta, acid rain, ozone-layer depletion, cooling from stratospheric aerosols, H2O greenhouse, CO2 greenhouse, poisons and mutagens, and oscillatory climate have been proposed as deleterious environmental effects of the Chicxulub impact with durations ranging from a few minutes to a million years. This succession of effects defines a temperature curve that is characteristic of large impacts. Although some patterns may be recognized in the K-T extinctions, and the survivorship rules changed across the boundary, relating specific environmental effects to species' extinctions is not yet possible. Geochemical records across the boundary support the occurrence a prompt thermal pulse, acid rain and a [~]5000 year-long greenhouse. The period of extinctions seems to extend into the earliest Tertiary

Drip flow variations under a stalactite of the Pere Noel cave (Belgium). Evidence of seasonal variations and air pressure constraints, 1998,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Genty D, Deflandre G,
The study of drip rate and seepage water electrical conductivity (hereafter called conductivity) under one stalactite in the Pere Noel cave (Belgium), with data produced from an automatic station since 1991, demonstrates several previously unobserved features: (1) measurement of drop volume shows that, for 94% of the time series, drop volume is constant (= 0.14 ml), but when discharge exceeds 48.2 drips min(-1), drop volume decreases, probably because of secondary drop formation; (2) the interannual drip rate variation is correlated to the annual water excess and its correlant, rainfall (R-2 = 0.98; exponential model); this result introduces a new improvement in the understanding of the previously investigated relationships between stalagmite annual laminae thickness and mean annual rainfall; (3) the drip rate shows a well marked seasonality: it increases abruptly in late fall or early winter and decreases slowly during spring, summer and fall. Increased discharge is accompanied by an increase in conductivity, which suggests that the flushed water is more mineralized and was stored in the karst aquifer for several months; (4) superimposed on these seasonal variations, there are two kinds of flow regimes which are driven by the atmospheric pressure: (i) a 'wiggles regime', whose duration is 1-7 days in length and which is inversely proportional to the air pressure wiggles; it is explained by either a ''shut-off faucet'' process due to the rock formation stress, or to a change in the two-phases flow component proportions (air/water); (ii) an 'unstable regime' characterized by abrupt switches (<2 h) or oscillations with variable periodicities, from a few minutes to a few hours. These occur when the drip rate reaches a threshold (i.e. 240 drops 10 min(-1)); the chaotic behaviour of this phenomenon is discussed. (C) 1998 Elsevier Science B.V. All rights reserved

Physical response of a karst drainage basin to flood pulses: Example of the Devil's Icebox cave system (Missouri, USA), 1998,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Halihan T. , Wicks C. M. , Engeln J. F. ,
In karst aquifers, water moves from the recharge area (sinkhole plains and swallets) to the discharge area (springs), traveling kilometers through the groundwater system in a period of hems to days. Transit rimes through karst aquifers are a function of the conduit geometry and connectedness, intensity and duration of the recharge event, and antecedent soil moisture. Often many of these factors are unknown or difficult to quantify. Therefore, predicting the response of a karst basin to recharge is difficult. Numerous researchers have attempted to understand the response of a karst basin, but a good understanding of whether the response is dependent on local features or regional effects is currently lacking. From April 1994 to May 1995, flood pulse hydrographs from a karst aquifer with well-developed and well-documented conduits (Devil's Icebox cave system) were obtained from a gaging station near the spring of the karst basin. Data were also collected from within the conduit system in an attempt to determine whether flow was locally controlled by constrictions in the conduits. Based on an application of Bernoulli's equation, analyses of the changes in kinetic head and potential head over time indicated local control during storm events. The observed sediment patterns and water level variations also support localized flow control during storm events. A numerical model of the constrictions was rested and reproduced the responses observed at the spring during initial periods of storm events. The model illustrated that the constricted flow was very sensitive to recharge. It also illustrated the transition from local control due to constriction to regional controls due to the aquifer matrix. (C) 1998 Elsevier Science B.V

A review of the last interglacial sea-level highstand (oxygen isotope substage 5e): Duration, magnitude and variability from Bahamian Data, 1999,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Carew J. L. , Mylroie J. E.

Genesis of a large cave system: the case study of the North of Lake Thun system (Canton Bern, Switzerland), 2000,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Jeannin Py. , Bitterli T. , Hauselmann P.
The genesis of the cave system in the region Hohgant-Sieben Hengste-Lake of Thun (more than 250 km of surveyed passage) has been reconstructed based on speleomorphological observations (mainly by observing where the morphology changes from vadose to phreatic). Eight flow systems (phases) and their respective conduit networks have been distinguished so far. The oldest had a phreatic level at an altitude of 1950 m a.s.l. The last corresponds to today's phreatic zone located at 658 m a.s.l. Between each system, the water table dropped several hundred meters. This appears to be a consequence of changes in boundary conditions, mainly the springis position, which moved down as a tectonic uplift and deepening of the nearby valleys occured. Observations demonstrate that phreatic conduits are sometimes developed close to the ancient water table, but often much deeper, down to 200 to 400 m below this level. The change from one phase to the next seems to have been quick. This stepwise evolution is compatible with the results of computer models which give durations of 10'000 to 30i000 years for conduits systems to develop. Analysis of the conduit networks of each flow system shows that their geometry is mainly influenced by the hydraulic gradients and the overall geometry of the aquifer. The orientation of discontinuity surfaces (fractures and bedding planes) and/or their intersections, play a subordinate role. This is also supported by numerical models found in the literature. As, despite a high fracture density, we observe deep rather than shallow phreatic loops, we assume that the heterogeneity of the discontinuity openings plays a more important role in the depth of karstification than the frequency of the discontinuities.

Modeling the hydraulical behavior of a fissured-karstic aquifer in exploitation conditions, 2002,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Debieche Th, Guglielmi Y, Mudry J,
A 5-year daily measurement of the dynamic level in a borehole was plotted versus cumulative yield since the beginning of exploitation. Eighty percent of the experimental curve is explained by a linear function (h = aQ(c) h(0)) by intervals. Only floods, which follow heavy storms and non-pumping cannot be taken into account. The slopes of the straight lines are spread around two constant values of the slope: a(r) = .35 x 10(-3) m m(-3), which characterizes the part which is controlled by recharge, and a(p) = -0.14 x 10(-3) m m(-3), which characterizes the draining part of the aquifer fractures. This linear fitting demonstrates that the borehole -aquifer system can be considered as an equivalent continuous medium, where the linear relationship between dynamic head and pumped yield are defined by the values of ar and a, Thus the hydraulic behavior of the aquifer differs according to the pumping rate: equivalent continuous medium for a low rate, dual permeability for a high one. This work demonstrates that the long-term behavior of an exploited fissured aquifer can be described by a simple model, if the duration of the aquifer test is long enough (1-3 months). It also shows that the production phase must include repetitive head measurements in order to refine the exploitation yield and the management conditions. (C) 2002 Elsevier Science B.V. All rights reserved

Quantification of Macroscopic Subaerial Exposure Features in Carbonate Rocks, 2002,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Budd Da, Gaswirth Sb, Oliver Wl,
The macroscopic features that characterize subaerial exposure surfaces in carbonates are well known, but their significance has not been quantitatively evaluated. This study presents such an analysis in the lower Oligocene Suwannee Limestone of west-central Florida. Eleven cores were point counted on a foot-by-foot basis for the abundance of caliche, rhizoliths, karst breccia, open vugs, infiltrated sediment, fractures, and pedogenic alteration. These features occur at and below intraformational exposure surfaces, which represent hiatuses estimated at 104 to 105 years, and an uppermost sequence-bounding unconformity representing 0.5 Myr, as revealed by Sr-isotope data. Statistical analyses of the point-count data reveal only a few significant relationships. (1) The hierarchy of exposure surfaces, and by inference duration of exposure, is differentiated only at a marginally significant level by sediment-filled vugs preferentially associated with the sequence boundary. Duration of exposure did not have a significant impact on the relative abundance of all other features. (2) Proximity (< 5 ft; 1.5 m) to any exposure surface is indicated only by rhizoliths, caliche, and pedogenic alteration, whereas karst breccia is preferentially found distal (> 5 ft) to both types of surfaces. Fractures, open vugs, and infiltrated sediment show no proximal or distal preference for either type of surface. (3) Depositional texture has no statistically significant affect on the presence or abundance of the exposure features, with the exception that rhizoliths and open vugs are preferentially more abundant in packstones relative to grainstones. This is interpreted to be the result of a soil-moisture effect. Factor analysis defines four factors that explain 46% to 52% of the total variance in the abundance data relative to the sequence boundary and the intraformational surfaces, respectively. The loading of each exposure feature on each factor is the same with respect to both types of surfaces, which is further evidence that the abundance of exposure features is independent of duration of exposure. Factor 1 is interpreted to be the amplitude of base-level changes and controls the abundance of karst breccia. Factor 2 is interpreted to be abundance of vegetation and relates to the abundance of rhizoliths and fractures. Factor 3 is interpreted to be a combination of soil-zone PCO2 and the availability of water and affects the abundance of pedogenic overprinting, caliche, and open vugs. Factor 4 is stratigraphic proximity to the sequence boundary, which controls the presence of sediment-filled voids. The amount of uncorrelated unique variance associated with infiltrated sediments, pedogenic overprinting, caliche, and open vugs is large (> 60%), meaning that feature abundance is also influenced by other unidentified site-specific factors. These results demonstrate that quantifying the abundance of macroscopic subaerial exposure features in limestones has the potential to yield more insight into the significance of those features than a mere qualitative assessment. This is particularly true when assessing the potential role of the many variables that can affect the development of these features

Lower Miocene gypsum palaeokarst in the Madrid Basin (central Spain): dissolution diagenesis, morphological relics and karst end-products, 2002,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Rodriguezaranda J. P. , Calvo J. P. , Sanzmontero M. E. ,
The Miocene sedimentary record of the Madrid Basin displays several examples of palaeokarstic surfaces sculpted within evaporite formations. One of these palaeokarstic surfaces represents the boundary between two main lithostratigraphic units, the Miocene Lower and Intermediate units of the Madrid Basin. The palaeokarst formed in lacustrine gypsum deposits of Aragonian age and corresponds to a surface palaeokarst (epikarst), further buried by terrigenous deposits of the overlying unit. Karst features are recognized up to 5.5 m beneath the gypsum surface. Exokarst and endokarst zones are distinguished by the spatial distribution of solution features, i.e. karren, dolines, pits, conduits and caves, and collapse breccias, sedimentary fills and alteration of the original gypsum across the karst profiles. The development of the gypsum palaeokarst began after drying out of a saline lake basin, as supported by recognition of root tubes, later converted to cylindrical and funnel-shaped pits, at the top of the karstic profiles. The existence of a shallow water table along with low hydraulic gradients was the main factor controlling the karst evolution, and explains the limited depth reached by both exokarst and endokarst features. Synsedimentary fill of the karst system by roughly laminated to massive clay mudstone with subordinate carbonate and clastic gypsum reflects a punctuated sedimentation regime probably related to episodic heavy rainfalls typical of arid to semi-arid climates. Duration of karstification is of the order of several thousands of years, which is consistent with previous statements that gypsum karstification can develop rapidly over geologically short time periods

Assessing Humidity in an Upper Pleistocene Karst Environment: Palaeoclimates and Palaeomicroenvironments at the cave Divje babe I, Slovenia, 2002,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Turk Ivan, Skaberne Dragomir, Blackwell Bonnie A. B. , Dirjec Janez

The article presents a new sedimentary-climatic model for explaining autochthonous clastic sediment in the Upper Pleistocene site, Divje babe I, Slovenia. The sediment analysed here was deposited during Oxygen Isotope Stages 1, 3 and 5 (OIS, OIS 3, OIS 5). The stress is on precipitation, which we explained on the basis of the quantity of authigenic structural aggregates in the sediment. We supported the results with quantitative analysis of clasts with etched surface, which represent corrosion of the cave ceiling, and etched bones, which represent corrosion on the cave ground. We also analysed the relation between climate and cave bears, and Neanderthals and climate, on the basis of mass fossil remains and finds of artefacts. All analyses were made on the basis of three-dimensional sampling, i.e., in horizontal and vertical directions. We sampled 65 profiles over an area of 65 m2. Each profile had 35 arbitrary stratigraphic units (splits) with data on aggregates, etched bones, fossil remains and artefacts. In explaining the sediment characteristics that point to climatic parameters, we consistently took into account the Holocene standards for the site. We found that the climate in OIS 3 was colder and damper than in OIS 1 and OIS 5. People and animals responded to the climatic changes in OIS 3 with more visits to the cave, but not at the same time. The climatic change was presumably reflected in the microlocation of the cave mainly by the longer duration of snow cover.

Karst processes from the beginning to the end: How can they be dated?, 2003,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Bosk, B

Determining the beginning and the end of the life of a karst system is a substantial problem. In contrast to most of living systems development of a karst system can be „frozen“ and then rejuvenated several times (polycyclic and polygenetic nature). The principal problems may include precise definition of the beginning of karstification (e.g. inception in speleogenesis) and the manner of preservation of the products of karstification. Karst evolution is particularly dependent upon the time available for process evolution and on the geographical and geological conditions of the exposure of the rock. The longer the time, the higher the hydraulic gradient
and the larger the amount of solvent water entering the karst system, the more evolved is the karst. In general, stratigraphic discontinuities, i.e. intervals of nondeposition (disconformities and unconformities), directly influence the intensity and extent of karstification. The higher the order of discontinuity under study, the greater will be the problems of dating processes and events. The order of unconformities influences the stratigraphy of the karst through the amount of time available for subaerial processes to operate. The end of karstification can also be viewed from various perspectives. The final end occurs at the moment when the host
rock together with its karst phenomena is completely eroded/denuded. In such cases, nothing remains to be dated. Karst forms of individual evolution stages (cycles) can also be destroyed by erosion, denudation and abrasion without the necessity of the destruction of the whole sequence of karst rocks. Temporary and/or final interruption of the karstification process can be caused by the fossilisation of karst due to loss of its hydrological function. Such fossilisation can be caused by metamorphism, mineralisation,
marine transgressions, burial by continental deposits or volcanic products, tectonic movements, climatic change etc. Known karst records for the 1st and 2nd orders of stratigraphic discontinuity cover only from 5 to 60 % of geological time. The shorter the time available for karstification, the greater is the likelihood that karst phenomena will be preserved in the stratigraphic record. While products of short-lived karstification on shallow carbonate platforms can be preserved by deposition during the immediately succeeding sea-level rise, products of more pronounced karstification can be destroyed by a number of different geomorphic
processes. The longer the duration of subaerial exposure, the more complex are those geomorphic agents.
Owing to the fact that unmetamorphosed or only slightly metamorphosed karst rocks containing karst and caves have occurred since Archean, we can apply a wide range of geochronologic methods. Most established dating methods can be utilised for direct and/or indirect dating of karst and paleokarst. The karst/paleokarst fills are very varied in composition, including a wide range of clastic and chemogenic sediments, products of surface and subsurface volcanism (lava, volcaniclastic materials, tephra), and deepseated
processes (hydrothermal activity, etc). Stages of evolution can also be based on dating correlated sediments that do not fill karst voids directly. The application of individual dating methods depends on their time ranges: the older the subject of study, the more limited is the choice of method. Karst and cave fills are relatively special kinds of geologic materials. The karst environment favours both the preservation of paleontological remains and their destruction. On one hand, karst is well known for its richness of paleontological sites, on the other hand most cave fills are complete sterile, which is true especially for the inner-cave facies. Another
problematic feature of karst records is the reactivation of processes, which can degrade a record by mixing karst fills of different ages.

Sedimentary evidence for a rapid, kilometer-scale crustal doming prior to the eruption of the Emeishan flood basalts, 2003,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
He B. , Xu Y. G. , Chung S. L. , Xiao L. , Wang Y. ,
Biostratigraphic and sedimentologic investigations in 67 sections have been carried out for the Middle Permian Maokou Formation that immediately underlies the Emeishan flood basalts in southwest China. The results suggest a domal crustal thinning before the emplacement of the Emeishan large igneous province. Variably thinned carbonates in the Maokou Formation are capped by a subaerial unconformity, which is generally manifested by karst paleotopography, paleoweathering zone, or locally by relict gravels and basal conglomerates. Provenance analysis indicates that these gravels and conglomerates were mainly derived from the uppermost Maokou Formation. Therefore, the stratigraphic thinning likely resulted from differential erosion due to regional uplift. Iso-thickness contours of the Maokou Formation delineate a subcircular uplifted area, in accordance with the crustal doming caused by a starting mantle plume as predicted by experimental and numerical modeling. The duration of this uplift is estimated to be less than 3 Myr and the magnitude of uplift is greater than 1000 m. The sedimentary records therefore provide independent supporting evidence for the mantle plume initiation model for the generation of the Emeishan flood basalts. (C) 2003 Elsevier B.V. All rights reserved

Evaluation of aquifer thickness by analysing recession hydrographs. Application to the Oman ophiolite hard-rock aquifer, 2003,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Dewandel B, Lachassagne P, Bakalowicz M, Weng P, Almalki A,
For more than a century, hydrologists and hydrogeologists have been investigating the processes of stream and spring baseflow recession, for obtaining data on aquifer characteristics. The Maillet Formula [Librairie Sci., A. Hermann, Paris (1905) 218], an exponential equation widely used for recession curve analysis, is an approximate analytical solution for the diffusion equation in porous media whereas the equation proposed by Boussinesq [C. R. Acad. Sci. 137 (1903) 5; J. Math. Pure Appl. 10 (1904) 5], that depicts baseflow recession as a quadratic form, is an exact analytical solution. Other formulas currently used involve mathematical functions with no basis on groundwater theory. Only the exact analytical solutions can provide quantitative data on aquifer characteristics. The efficiency of the two methods was compared on the basis of recession curves obtained with a 2D cross-sectional finite differences model that simulates natural aquifers. Simulations of shallow aquifers with an impermeable floor at the level of the outlet show that their recession curves have a quadratic form. Thus, the approximate Maillet solution largely overestimates the duration of the 'influenced' stage and underestimates the dynamic volume of the aquifer. Moreover, only the Boussinesq equations enable correct estimates of the aquifer parameters. Numerical simulations of more realistic aquifers, with an impermeable floor much deeper than the outlet, proves the robustness of the Boussinesq formula even under conditions far from the simplifying assumptions that were used to integrate the diffusion equation. The quadratic form of recession is valid regardless of the thickness of the aquifer under the outlet, and provides good estimates of the aquifer's hydrodynamic parameters. Nevertheless, the same numerical simulations show that aquifers with a very deep floor provide an exponential recession. Thus, in that configuration, the Maillet formula also provides a good fit of recession curves, even if parameter estimation remains poor. In fact, the recession curve appears to be closer to exponential when flow has a very important vertical component, and closer to quadratic when horizontal flow is dominant. As a consequence, aquifer permeability anisotropy also changes the recession form. The combined use of the two fitting methods allows one to quantify the thickness of the aquifer under the outlet. (C) 2003 Elsevier Science B.V. All rights reserved

Unraveling the Origin of Carbonate Platform Cyclothems in the Upper Triassic Durrenstein Formation (Dolomites, Italy), 2003,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Preto Nereo, Hinnov Linda A. ,
Facies analysis of the Durrenstein Formation, central-eastern Dolomites, northern Italy, indicates that this unit was deposited on a carbonate ramp, as evidenced by the lack of a shelf break, slope facies, or a reef margin, together with the occurrence of a 'molechfor' biological association. Its deposition following the accumulation of rimmed carbonate platforms during the Ladinian and Early Carnian marks a major shift in growth mode of the Triassic shallow marine carbonates in the Dolomites. The Durrenstein Formation is characterized by a hierarchical cyclicity, with elements strongly suggestive of an allocyclic origin, including (a) subaerial exposure features directly above subtidal facies within meter-scale cyclothems, (b) purely subtidal carbonate cyclothems, (c) symmetric peritidal carbonate cyclothems, and (d) continuity of cyclothems of different orders through facies boundaries. The Durrenstein cyclothems are usually defined by transgressive and regressive successions, and so most of them probably originated from sea-level oscillations. Their allocyclic origin allows their use for high-resolution correlations over distances up to 30 km. A stratigraphic section in the Tre Cime di Lavaredo area, encompassing the upper part of the Durrenstein Formation and the lower part of the overlying Raibl Formation (Upper Carnian) was studied using time-frequency analysis. A strong Milankovitch signal appeared when interference arising from a variable sedimentation rate was estimated and removed by tuning the short precession line in a spectrogram. All of the principal periodicities related to the precession index and eccentricity, calculated for 220 Ma, are present: P1 (21.9 ky); P2 (17.8 ky); E1 (400 ky), E2 (95 ky), and E3 (125 ky), along with a peak at a frequency double that of the precession, which is a predicted feature of orbitally forced insolation at the equator. Components possibly related to Earth's obliquity at ca. 35 ky and ca. 46 ky are present as well. The recovery of Milankovitch periodicities allows reconstruction of a high-resolution timescale that is in good agreement with published durations of the Carnian based on radiometric ages. The recognition of a Milankovitch signal in the Durrenstein and lower Raibl formations, as well as in other Mesozoic carbonate platforms, strongly supports a deterministic and predictable--rather than stochastic--control on the formation of carbonate platforms. Carbonate platforms might thus be used in the future for the construction of an astronomical time scale for the Mesozoic

Modeling of karst aquifer genesis: Influence of exchange flow, 2003,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Bauer S, Liedl R, Sauter M,
[1] This paper presents a numerical model study simulating the early karstification of a single conduit embedded in a fissured system. A hybrid continuum-discrete pipe flow model (CAVE) is used for the modeling. The effects of coupling of the two flow systems on type and duration of early karstification are studied for different boundary conditions. Assuming fixed head boundaries at both ends of the conduit, coupling of the two flow systems via exchange flow between the conduit and the fissured system leads to an enhanced evolution of the conduit. This effect is valid over a wide range of initial conduit diameters, and karstification is accelerated by a factor of about 100 as compared to the case of no exchange flow. Parameter studies reveal the influence of the exchange coefficient and of the hydraulic conductivity of the fissured system on the development time for the conduit. In a second scenario the upstream fixed head boundary is switched to a fixed flow boundary at a specified flow rate during the evolution, limiting the amount of water draining toward the evolving conduit. Depending on the flow rate specified, conduit evolution may be slowed down or greatly impaired if exchange flow is considered

Results 16 to 30 of 66
You probably didn't submit anything to search for