MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_left.php on line 5
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That datum plane is a reference level to which topographic or water levels in wells are related [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_right.php on line 7
What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for diagenesis (Keyword) returned 93 results for the whole karstbase:
Showing 16 to 30 of 93
ASSOCIATION OF TEPEES AND PALEOKARST IN THE LADINIAN CALCARE-ROSSO (SOUTHERN ALPS, ITALY), 1994,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Mutti M. ,
The Ladinian Calcare Rosso of the Southern Alps provides a rare opportunity to examine the temporal relationships between tepees and palaeokarst. This unit comprises peritidal strata pervasively deformed into tepees, repeatedly capped by palaeokarst surfaces mantled by terra rossa. Palaeokarsts, characterized by a regional distribution across the Southern Alps, occur at the base and at the top of the unit. Local palaeokarsts, confined to this part of the platform, occur within the Calcare Rosso and strongly affected depositional facies. Tepee deformation ranges from simple antiformal structures (peritidal tepecs) to composite breccias floating in synsedimentary cements and internal sediments (senile tepees). Peritidal tepees commonly occur at the top of one peritidal cycle, in association with subaerial exposure at the cycle top, while senile tepees affect several peritidal cycles, and are always capped by a palaeokarst surface. Cements and internal sediments form up to 80% of the total rock volume of senile tepees. The paragenesis of senile tepees is extremely complex and records several, superimposed episodes of dissolution, cement precipitation (fibrous cements, laminated crusts, mega-rays) and deposition of internal sediments (marine sediment and terra rossa). Petrographical observations and stable isotope geochemistry indicate that cements associated with senile tepees precipitated in a coastal karstic environment under frequently changing conditions, ranging from marine to meteoric, and were altered soon after precipitation in the presence of either meteoric or mixed marine/meteoric waters. Stable isotope data for the cements and the host rock show the influence of meteoric water (average deltaO-18 = - 5.8 parts per thousand), while strontium isotopes (average Sr-87/Sr-86 = 0.707891) indicate that cements were precipitated and altered in the presence of marine Triassic waters. Field relationships, sedimentological associations and paragenetic sequences document that formation of senile tepees was coeval with karsting. Senile tepees formed in a karst-dominated environment in the presence of extensive meteoric water circulation, in contrast to previous interpretations that tepees formed in arid environments, under the influence of vadose diagenesis. Tepees initiated in a peritidal setting when subaerial exposure led to the formation of sheet cracks and up-buckling of strata. This porosity acted as a later conduit for either meteoric or mixed marine/meteoric fluids, when a karst system developed in association with prolonged subaerial exposure. Relative sea level variations, inducing changes in the water table, played a key role in exposing the peritidal cycles to marine, mixed marine/meteoric and meteoric diagenetic environments leading to the formation of senile tepees. The formation and preservation in the stratigraphic record of vertically stacked senile tepees implies that they formed during an overall period of transgression, punctuated by different orders of sea level variations, which allowed formation and later freezing of the cave infills

DIAGENESIS OF AN UPPER TRIASSIC REEF COMPLEX, WILDE-KIRCHE, NORTHERN CALCAREOUS ALPS, AUSTRIA, 1994,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Satterley A. K. , Marshall J. D. , Fairchild I. J. ,
The Wilde Kirche reef complex (Early-Late Rhaetian) grew as an isolated carbonate structure within the shallow Kossen Basin. At the Triassic/Jurassic boundary a single brief(c. 10-50 ka) period of subaerial exposure occurred. The preserved karst profile (70 m thick) displays a vadose zone, enhanced dissolution at a possible palaeo-watertable (5-15m below the exposure surface), and a freshwater phreatic zone. Karst porosity was predominantly biomouldic. primary cavities and biomoulds were enlarged and interconnected in the freshwater phreatic zone; cavity networks developed preferentially in patch reef facies. Resubmegence of the reef complex allowed minor modification of the palaeokarst surface by sea floor dissolution and Fe-Mn crust deposition on a sediment-starved passive margin. Fibrous calcite (FC), radiaxial fibrous calcite (RFC) and fascicular optic calcite (FOC) cements preserved as low Mg calcite (LMC) are abundant in primary and karst dissolution cavities. FC cement is restricted to primary porosity, particularly as a synsedimentary cement at the windward reef margin. FC, RFC and FOC contain microdolomite inclusions and show patchy non-/bright cathodoluminescence. delta(18)O values ofnon-luminescent portions (interpreted as near original) are -1.16 to -1.82 parts per thousand (close to the inferred delta(18)O of calcite precipitated from Late Triassic sea water). delta(13)C values are constant ( to .2 parts per thousand). These observations suggest FC, RFC and FOC were originally marine high Mg calcite (HMC) precipitates, and that the bulk of porosity occlusion occurred not in the karst environment but in the marine environment during and after marine transgression. The HMC to LMC transition may have occurred in contact with meteoric water only in the case of FC cement. The most altered (brightly luminescent) portions of RFC/FOC cements yield delta(18)O = -2.44 to -5.8 parts per thousand, suggesting HMC to LMC alteration at up to 34 degrees C, in the shallow burial environment at depths of 180-250 m. Abundant equant cements with delta(18)O = -4.1 to -7.1 parts per thousand show crisp, uniform or zoned dull luminescence. They are interpreted as unaltered cements precipitated at 33-36 degrees C at 200-290 m burial depth, from marine-derived fluids under a slightly enhanced geothermal gradient. Fluids carrying the equant cements may have induced the HMC to LMC transition in the fibrous cements

ORIGIN OF ENDOGENETIC MICRITE IN KARST TERRAINS - A CASE-STUDY FROM THE CAYMAN ISLANDS, 1995,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Jones B. , Kahle C. F. ,
Cavities in the dolostones of the Cayman Formation (Miocene) on Grand Cayman and Cayman Brac commonly contain spar calcite cements and/or a variety of exogenetic (derived from sources external to the bedrock) and endogenetic (derived from sources in the bedrock) internal sediments. Micrite is a common component in many of these internal sediments. The exogenetic micrite, which is typically laminated and commonly contains fragments of marine biota, originated from the nearby shallow lagoons. The endogenetic micrite formed as a residue from the breakdown of spar calcite crystals by etching, as constructive and destructive envelopes developed around spar calcite crystals, by calcification of microbes, by breakdown of calcified filamentous microbes, and by precipitation from pore waters. Once produced, the endogenetic micrite may be transported from its place of origin by water flowing through the cavities. Endogenetic micrite can become mixed with the exogenetic micrite. Subsequently, it is impossible to recognize the origin of individual particles because the particles in endogenetic micrite are morphologically like the particles in exogenetic micrite. Formation of endogenetic micrite is controlled by numerous extrinsic and intrinsic parameters. In the Cayman Formation, for example, most endogenetic micrite is produced by etching of meteoric calcite crystals that formed as a cement in the cavities or by microbial calcification. As a result, the distribution of the endogenetic micrite is ultimately controlled by the distribution of the calcite cement and/or the microbes-factors controlled by numerous other extrinsic variables. Irrespective of the factors involved in its formation, it is apparent that endogenetic micrite can be produced by a variety of processes that are operating in the confines of cavities in karst terrains

200-MILLION YEARS OF KARST HISTORY, DACHSTEIN LIMESTONE, HUNGARY, 1995,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Juhasz E. , Korpas L. , Balog A. ,
Platform carbonates of the Upper Triassic Dachstein Limestone in Naszaly Hill have been karstified extensively over the past 200 million years. They provide an excellent example of polyphase karstic diagenesis that is probably typical of many subaerially exposed carbonate sequences. Seven karstic phases are recognized in the area, each of which include polyphase karstic events. The first karst phase was associated with the Lofer cycles. Meteoric waters caused dissolution; enlarged fractures and cavities were filled by marine and/or vadose silts and cement. The second karst phase was caused by local tectonic movements. Bedding-plane-controlled phreatic caves were formed, and filled by silts. The third karst phase lasted from the end of the Triassic to the Eocene. This was a regional, multiphase karstic event related to younger composite unconformities. Bauxitic fill is the most characteristic product of this phase. The karst terrain reached its mature or senile stage with very little porosity. Narrow veins and floating rafts of white calcite marks karst phase 4, which resulted from hydrothermal activity associated with Palaeogene magmatism. The early Rupelian phase of Alpine uplift caused large-scale rejuvenation of the former karst terrain (karst phase 5). Subsequently Naszaly Hill was buried as an area of juvenile karst with significant porosity. A second period of hydrothermal activity in the area (karst phase 6) was induced by Miocene volcanism, which resulted in wide, pale green calcite veins. Finally karst phase 7 was of tectonic origin. Following the most recent, Miocene uplift of the Naszaly Hill, the carbonates have again become the site of vadose karst development

Evaporites, brines and base metals: What is an evaporite? Defining the rock matrix, 1996,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Warren J. K. ,
This paper, the first of three reviews on the evaporite-base-metal association, defines the characteristic features of evaporites in surface and subsurface settings. An evaporite is a rock that was originally precipitated from a saturated surface or near-surface brine in hydrological systems driven by solar evaporation. Evaporite minerals, especially the sulfates such as anhydrite and gypsum, are commonly found near base-metal deposits. Primary evaporites are defined as those salts formed directly via solar evaporation of hypersaline waters at the earth's surface. They include beds of evaporitic carbonates (laminites, pisolites, tepees, stromatolites and other organic rich sediment), bottom nucleated salts (e.g. chevron halite and swallow-tail gypsum crusts), and mechanically reworked salts (such as rafts, cumulates, cross-bedded gypsarenites, turbidites, gypsolites and halolites). Secondary evaporites encompass the diagenetically altered evaporite salts, such as sabkha anhydrites, syndepositional halite and gypsum karst, anhydritic gypsum ghosts, and more enigmatic burial associations such as mosaic halite and limpid dolomite, and nodular anhydrite formed during deep burial. The latter group, the burial salts, were precipitated under the higher temperatures of burial and form subsurface cements and replacements often in a non-evaporite matrix. Typically they formed from subsurface brines derived by dissolution of an adjacent evaporitic bed. Because of their proximity to 'true' evaporite beds, most authors consider them a form of 'true' evaporite. Under the classification of this paper they are a burial form of secondary evaporites. Tertiary evaporites form in the subsurface from saturated brines created by partial bed dissolution during re-entry into the zone of active phreatic circulation. The process is often driven by basin uplift and erosion. They include fibrous halite and gypsum often in shale hosts, as well as alabastrine gypsum and porphyroblastic gypsum crystals in an anhydritic host. In addition to these 'true' evaporites, there is another group of salts composed of CaSO4 or halite. These are the hydrothermal salts. Hydrothermal salts, especially hydrothermal anhydrite, form by the subsurface cooling or mixing of CaSO4- saturated hydrothermal waters or by the ejection of hot hydrothermal water into a standing body of seawater or brine. Hydrothermal salts are poorly studied but often intimately intermixed with sulfides in areas of base-metal accumulations such as the Kuroko ores in Japan or the exhalative brine deeps in the Red Sea. In ancient sediments and metasediments, especially in hydrothermally influenced active rifts and compressional belts, the distinction of this group of salts from 'true' evaporites is difficult and at times impossible. After a discussion of hydrologies and 'the evaporite that was' in the second review, modes and associations of the hydrothermal salts will be discussed more fully in the third review

Groundwater circulation and geochemistry of a karstified bank-marginal fracture system, South Andros Island, Bahamas, 1997,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Whitaker Fiona F. , Smart Peter L. ,
On the east coast of South Andros Island, Bahamas, a major bank-marginal fracture system characterised by vertically extensive cavern systems (blue holes) is developed sub-parallel to the steep-sided deep-water re-entrant of the Tongue of the Ocean. In addition to providing a discharge route for meteoric, mixed and geochemically evolved saline groundwaters, a strong local circulation occurs along the fracture system. This generates enhanced vertical mixing within voids of the fracture system, evidenced by the increasing mixing zone thickness, and the thinning and increasing salinity of brackish lens waters from north to south along the fracture system. Furthermore, tidally driven pumping of groundwaters occurs between the fracture and adjacent carbonate aquifer affecting a zone up to 200 m either side of the fracture.The resultant mixing of groundwaters of contrasting salinity and within and along the fracture system and with the surrounding aquifer waters, together with bacterial oxidation of organic matter, generates significant potential for locally enhanced diagenesis. Undersaturation with respect to calcite within the fresh (or brackish)-salt water mixing zone is observed in the fracture system and predicted in the adjacent aquifer, while mixing between the brackish fracture lens and surrounding high fresh waters causes dissolution of aragonite but not calcite. The latter gives rise to considerable secondary porosity development, because active tidal pumping ensures continued renewal of dissolutional potential. This is evidenced by calcium and strontium enrichment in the brackish lens which indicates porosity generation by aragonite dissolution at a maximum rate of 0.35% ka-1, up to twice the average estimated for the fresh water lens. In contrast saline groundwaters are depleted in calcium relative to open ocean waters suggesting the formation of calcite cements.The development of a major laterally continuous cavernous fracture zone along the margin of the carbonate platform permits enhanced groundwater flow and mixing which may result in generation of a diagenetic `halo' at a scale larger than that generally recognised around syn-sedimentary fractures in fossil carbonates. This may be characterised by increased secondary porosity where a relative fall in sea-level results in exposure and formation of a meteoric groundwater system, or cementation by `marine' calcite both below this meteoric system, and where the bank surface is flooded by seawater

Hydrology, geochemistry and diagenesis of fracture blue holes, South Andros, Bahamas, 1998,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Whitaker F. F. , Smart P. L.

An overview of the geology of the Transvaal Supergroup dolomites (South Africa), 1998,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Eriksson Pg, Altermann W,
In the Neoarchaean intracratonic basin of the Kaapvaal craton, between approximately 2640 Ma and 2516 Ma, two successive stromatolitic carbonate platforms developed. Deposition started with the Schmidtsdrif Subgroup, which is probably oldest in the southwestern part of the basin, and which contains stromatolitic carbonates, siliciclastic sediments and minor lava flows. Subsequently, the Nauga formation carbonates were deposited on peritidal flats located to the southwest and were drowned during a transgression of the Transvaal Supergroup epeiric sea, around 2550 Ma ago. This transgression led to the development of a carbonate platform in the areas of the preserved Transvaal and Griqualand West basins, which persisted for 30-50 Ma. During this time, shales were deposited over the Nauga Formation carbonates in the south-western portion of the epeiric sea. S subsequent period of basin subsidence led to drowning of the stromatolitic platform and to sedimentation of chemical, iron-rich silica precipitates of the banded iron formations (BIF) over the entire basin. Carbonate precipitation in the Archaean was largely due to chemical and lesser biogenic processes, with stromatolites and ocean water composition playing an important role. The stromatolitic carbonates in the preserved Griqualand West and Transvaal basins are subdivided into several formations, based on the depositional facies, reflected by stromatolite morphology, and on a intraformational unconformities; interbedded tuffs and available radiometric age data do not ye permit detailed correlation of units from the two basins. Thorough dolomitisation of most formations took place at different post-depositional stages, but mainly during early diagenesis. Partial silification was the result of diagenetic and weathering processes. Karstification of the carbonate rocks was related to periods of exposure to subaerial conditions and to percolation of groundwater. Such periods occurred locally at the time of carbonate and BIF deposition. Main karstification, however, probably took place during an erosional period between approximately 2430 Ma and 2320 Ma

Ancient helictites and the formation of vadose crystal silt in upper Jurassic carbonates (Southern Germany), 1998,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Reinhold C. ,
Speleothems and vadose crystal silt are effective indications for karstification processes in the fossil record. Upper Jurassic limestones in Southern Germany that have undergone vadose diagenesis contain on crystal margins and tips of coarse bladed calcites numerous fibrous calcite crystals, formed by abnormal growth conditions, and internal sediment within fractures and vugs, Fibrous calcite crystals grew as crusts, in fence and mesh-like arrangements. Fibrous crystals, which have a length:width ratio of greater than 1:10, are made up of stacked subcrystals composed of an alternation of hexagonal prisms and rhombohedra, They exhibit a central to somewhat eccentric capillary. Electron probe microanalysis shows low-Mg calcite mineralogy with negligible amounts of Fe, Mn, and Sr as well as dis seminated clay and metal hydroxide impurities. Stable-isotope data show relatively C-13-enriched and O-18-depleted values (delta(13)C similar to parts per thousand PDB, delta(18)O similar to -6 parts per thousand PDB), suggesting a meteoric environment and CO2 degassing as the main process of formation, Fibrous calcite crystals form from capillary fluids that are highly supersaturated with respect to calcium carbonate, contaminated with alien mineral impurities. The abnormal growth pattern is suggested to be substrate-controlled and attributed to mineral impurities that produce numerous crystallization nuclei. Fibrous calcite crystals are comparable to helictites of the filiform type that are reported only from Quaternary caves. Nevertheless, the diagenetic sequence and oxygen isotope data suggest a Late Cretaceous to early Tertiary age for their formation. The internal sediment consists exclusively of silt-size fragments of fibrous crystals and therefore is comparable to vadose crystal silt. Crystal silt is generated by the erosion of fibrous crystals both by va dose seepage and air currents. This study is the first observation of ancient helictites and related vadose crystal silt, documenting the close relationship between pore ceiling vadose cements and the generation of crystal silt

The role of high-energy events (hurricanes and/or tsunamis) in the sedimentation, diagenesis and karst initiation of tropical shallow water carbonate platforms and atolls, 1998,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Jan F. G. B. L. ,
Karst morphology appears early, even during carbonate sediment deposition. Examples from modern to 125-ka-old sub-, inter- and supratidal sediments are given from the Bahamas (Atlantic Ocean) and from Tuamotuan atolls (southeastern Pacific Ocean), with mineralogical and hydrological analyses. Karstification is favoured by the aragonitic composition of bioclasts coming from the shallow marine bio-factory. Lithification by aragonite cements appears as a rim around carbonate deposits and dissolution and non-cementation start at the same time on modern supratidal deposits (Andros micrite or atoll coral rudite) and provoke the formation of a central depression on small or large carbonate platforms. In fact, this early solution of the centre of platforms is closely related to the location of each of the studied examples on hurricane tracks. High-energy events, such as hurricanes and tsunamis, affect sediment transport but hurricanes also affect diagenesis as a result of the enormous volume of freshwater carried and discharged along their paths. This couple, lithification- solution, is localised at sea level and accompanies sea-level fluctuations along the eustatic curve. Because of the precise location of hurricane action all around the Earth, early karstification by aragonite solution, cementation and supratidal carbonate sediment accumulations thigh-energy trails) act together on all the platforms and atolls located inside the Tropics (23 degrees 27') between roughly 5 degrees-10 degrees and 25 degrees on both hemispheres. However, early karstification acts alone on shallow carbonate platforms including atolls along the equatorial belt between 5 degrees-10 degrees N and 5 degrees-10 degrees S. These early steps of karstification are linked to the ocean-atmosphere interface due to the bathymetrical position of shallow carbonate platforms, including atolls. They lead to complex karstified emerged platforms, called high carbonate islands, where carbonate diagenesis, together with the development of bauxite- and/or a phosphate-rich cover and phreatic lens, will occur. (C) 1998 Elsevier Science B.V. All rights reserved

Paleokarsts in late Precambrian and Ordovician carbonates, Kalpin-Shaya uplift zone, Tarim basin, China, 1999,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Cao Hs, Yang Jd, Wang Dn,
The reservoir properties in the Kalpin-Shaya uplift zone, Tarim basin, are a common concern with regards to petroleum exploration and reservoir evaluation alike. Dissolution and paleokarst have a positive impact on the porosity as well as the storage capacity of carbonate reservoirs because the secondary porosity related to dissolution and paleokarst serves as excellent traps for migrating hydrocarbons. In order to evaluate the reservoir characteristics reasonably in the late Precambrian and Ordovician carbonate rocks, the secondary porosity, which was produced by dissolution and paleokarstification in late diagenetic stage. should be studied because the primary pores were mostly destroyed during the early-middle diagenesis due to serious compaction and multi-cementation. Carbonate rocks ate among the most important collectors of oil and gas accumulations in the world Important oil and gas reservoirs in paleokarst-containing carbonate rocks are known worldwide because micropores and megapores, such as solution openings, solution fissures, funnels, sinkholes. and caves, serve as the fundamentally important secondary porosity in those rocks. Several wells revealed that the Kalpin-Shaya region is a prospective target for oil and gas exploration. The reservoir carbonates of the Kalpin-Shaya uplift zone in the northern Tarim include dolomites and limestones. The best dolomite reservoirs are in the late Precambrian Qigebulake Formation (Z(2)(2)), the lower Qiulitage Group (is an element of(2-3)), the upper Qiulitage Group (O-1(1)), smd the Xiaoerbulake Formation (is an element of(1)), whereas limestone reservoirs are in the middle-upper formations of the upper Qiulitage Group (O-1(2-3)). On the basis of the study of petrology, paleontology, and stratigraphy from field work and well core data, the pore spaces within the Precambrian and Ordovician carbonate reservoirs are studied with the aim of proving that all secondary pores are controlled by dissolution and paleokarst

Alteration of magnetic properties of Palaeozoic platform carbonate rocks during burial diagenesis (Lower Ordovician sequence, Texas, USA), 1999,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Haubold Herbert,
Palaeomagnetic and sedimentological investigations of samples from two sections of correlative Iapetan platform carbonate rocks from Texas, USA, were made to test whether their magnetic properties reflect diagenetic alteration associated with regional and local tectonism. The Honeycut Formation (Llano Uplift area, central Texas), in close proximity to the late Palaeozoic Ouachita orogenic belt, exhibits a distinct correlation between magnetization intensity, magnetization age (direction) and lithofacies. Mudstones preserve their weak primary Early Ordovician magnetization, whereas dolo-grainstones carry a strong Pennsylvanian magnetization residing in authigenic magnetite. Fluid migration associated with the Ouachita Orogeny has been focused in lithofacies with high permeability and caused dolomite recrystallization and pervasive remagnetization. Magnetization intensity trends covary with fluid/rock ratios. However, aquitards were either not affected or less affected by these fluids. Unlike the Honeycut Formation, permeable rocks of the El Paso Group (Franklin Mountains, west Texas) carry only a non-pervasive Pennsylvanian magnetization. Therefore, a larger percentage of El Paso Group samples retain a primary Early Ordovician signature. This area is further removed from the Ouachita front, and, thus, the influence by Pennsylvanian orogenic fluids was less pronounced

Effects of groundwater flow on mineral diagenesis, with emphasis on carbonate aquifers, 1999,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Hans G. Machel,

Origin and attributes of paleocave carbonate reservoirs, 1999,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Loucks R. G.
Paleocave systems form an important class of carbonate reservoirs that are products of near-surface karst processes and later burial compaction and diagenesisOrigins of fractures, breccias, sediment fills and other features associated with paleocave reservoirs have been studied in modem and ancient cave systemsInformation about such cave systems can be used to reconstruct the general evolution of paleocave reservoirs and understand their associated scale, pore networks, and spatial complexities

A conceptual view of carbonate island karst, 1999,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Mylroie J. E. , Vacher H. L.
Conceptually, the karst of carbonate islands can be modeled as the result of eogenetic diagenesis, freshwater/ saltwater mixing, and glacioeustasyThe resulting eogenetic karst occurs in small, youthful limestone islands where the evolution of the karst is concurrent with meteoric diagenesis of the host rock, which has never been out of the active circulation of meteoric waterThe rearrangement of the material of high porosity / low permeability sediments into moderate porosity / high permeability rock feeds back to the nature of the diagenetic environment as the flow volume of the lens is reduced by increasing flow efficiencyLimestone islands are a constrained and simple environment, defined as carbonate islands (no noncarbonate rock) and composite islands (mixture of carbonate and non carbonate rock)Simple carbonate islands lack noncarbonate rocks within the active hydrological zone; carbonate-cover islands contain a noncarbonate contact that limits the freshwater lens and deflects vadose flowThe type of island greatly influences the subsequent karst hydrologyIncreasing island size appears to cross a threshold favoring conduit flowThe karst features resulting from these island types, combined with mixing geochemistry and glacioeustasy, differ from those in continental settings and require a unique conceptual approach to modeling

Results 16 to 30 of 93
You probably didn't submit anything to search for