MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_left.php on line 5
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That workover is the reworking of a well that has declined in yield [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_right.php on line 7
What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for mud (Keyword) returned 96 results for the whole karstbase:
Showing 16 to 30 of 96
Laboratory studies of predatory behaviour in two subspecies of the Carabid cave beetle: Neaphaenops tellkampfi., 1990,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Griffith David M.
Comparative studies on the foraging behaviour of Neaphaenops tellkampfi tellkampfi and N. t. meridionalis demonstrated adaptation to different environments. The southern subspecies N. t. meridionalis, which is found in wet muddy caves where cave cricket eggs are unlikely prey, did not locate buried cricket eggs and dug fewer and less accurate holes in the lab than the nominate subspecies. N. t. tellkampfi, which reaches high densities in sandy deep cave environments where cricket eggs are the only viable prey, gained significantly greater weight than meridionalis when presented buried cricket eggs as prey. There was no difference with respect to weight change between the subspecies in the presence of Ptomaphagus larvae. N. t. meridionalis gained weight at a significantly greater rate than the nominate subspecies with enchytraeid worms as prey. Enchytraeid worms represent the natural prey most likely to be encountered by N. t. meridionalis. 25% of beetle holes were dug deep enough to potentially located buried cricket eggs. Since Hubbell and Nortons' morphological data on the relationship between cricket ovipositor length and beetle predation have some problems with sample sizes and minor assumptions I conclude that there are no unequivocal data that support the possibility of coevolution between Neaphaenops and Hadenoecus.

Yates and other Guadalupian (Kazanian) oil fields, U. S. Permian Basin, 1990,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Craig Dh,
More than 150 oil and gas fields in west Texas and southeast New Mexico produce from dolomites of Late Permian (Guadalupian [Kazanian]) age. A majority of these fields are situated on platforms or shelves and produce from gentle anticlines or stratigraphic traps sealed beneath a thick sequence of Late Permian evaporites. Many of the productive anticlinal structures are elongate parallel to the strike of depositional facies, are asymmetrical normal to facies strike, and have flank dips of no more than 6{degrees}. They appear to be related primarily to differential compaction over and around bars of skeletal grainstone and packstone. Where the trapping is stratigraphic, it is due to the presence of tight mudstones and wackestones and to secondary cementation by anhydrite and gypsum. The larger of the fields produce from San Andres-Grayburg shelf and shelf margin dolomites. Cumulative production from these fields amounts to more than 12 billion bbl (1.9 x 109 m3) of oil, which is approximately two-thirds of the oil produced from Palaeozoic rocks in the Permian Basin. Eighteen of the fields have produced in the range from 100 million to 1.7 billion bbl (16-271 x 106 m3). Among these large fields is Yates which, since its discovery in October 1926, has produced almost 1.2 billion bbl (192 x 106 m3) out of an estimated original oil-in-place of 4 billion bbl (638 x 106 m3). Flow potentials of 5000 to 20 000 bbl (800 to 3200 m3) per day were not unusual for early Yates wells. The exceptional storage and flow characteristics of the Yates reservoir can be explained in terms of the combined effects of several geologic factors: (1) a vast system of well interconnected pores, including a network of fractures and small caves; (2) oil storage lithologies dominated by porous and permeable bioclastic dolograinstones and dolopackstones; (3) a thick, upper seal of anhydrite and compact dolomite; (4) virtual freedom from the anhydrite cements that occlude much porosity in other fields which are stratigraphic analogues of Yates; (5) unusual structural prominence, which favourably affected diagenetic development of the reservoir and made the field a focus for large volumes of migrating primary and secondary oil; (6) early reservoir pressures considerably above the minimum required to cause wells to flow to the surface, probably related to pressures in a tributary regional aquifer

KARST HYDROGEOLOGY OF THE TAKAKA VALLEY, GOLDEN BAY, NORTHWEST NELSON, 1991,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Mueller M. ,
Upper Ordovician Arthur Marble and Oligocene Takaka Limestone contain extensive phreatic cave systems beneath the Takaka valley and Golden Bay. Half of all water flows in the Takaka valley pass through subterranean drainage conduits in carbonate rock. New Zealand's largest freshwater springs, the Waikoropupu Springs, are one surface expression of these karst systems. Other characteristics are dolines and submarine springs. A paleocave system developed in the Arthur Marble during the formation of the northwest Nelson peneplain in the Late Cretaceous and early Tertiary. Subsequent subsidence of the peneplain, and deposition of Motupipi Coal Measures, Takaka Limestone, and Tarakohe Mudstone, was followed by folding and faulting of the sequence in the Kaikoura Orogeny. Uplift and erosion in the Pleistocene brought the two carbonate rock formations within reach of groundwater movements. The paleocave system in Arthur Marble was reactivated during periods of glacial, low sea levels, and a smaller cave system formed in the overlying Takaka Limestone. Both systems interact and extend to more than 100 m below present sea level, forming the Arthur Marble - Takaka Limestone aquifer

A MIDDLE PROTEROZOIC PALEOKARST UNCONFORMITY AND ASSOCIATED SEDIMENTARY-ROCKS, ELU BASIN, NORTHWEST CANADA, 1991,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Pelechaty S. M. , James N. P. , Kerans C. , Grotzinger J. P. ,
A major palaeokarst erosion surface is developed within the middle Proterozoic Elu Basin, northwestern Canada. This palaeokarst is named the sub-Kanuyak unconformity and truncates the Parry Bay Formation, a sequence of shallow-marine dolostones that were deposited within a north-facing carbonate platform under a semi-arid climate. The sub-Kanuyak unconformity exhibits up to 90 m of local relief, and also formed under semi-arid conditions when Parry Bay dolostones were subaerially exposed during a relative sea-level drop of about 180 m. Caves and various karren developed within the meteoric vadose and phreatic zones. Their geometry, size and orientation were largely controlled by northwest- and northeast-trending antecedent joints, bedding, and lithology. Near-surface caves later collapsed forming valleys, and intervening towers or walls, and plains. Minor terra rossa formed on top of highs. Karstification was most pronounced in southern parts of Bathurst Inlet but decreased northward, probably reflecting varying lengths of exposure time along a north-dipping slope. The Kanuyak Formation is up to 65 m thick, and partially covers the underlying palaeokarst. It consists of six lithofacies: (i) breccia formed during collapse of caves, as reworked collapse breccia and regolith; (ii) conglomerate representing gravel-dominated braided-fluvial deposits; (iii) sandstone deposited as braided-fluvial and storm-dominated lacustrine deposits; (iv) interbedded sandstone, siltstone and mudstone of sheet flood origin; (v) dolostones formed from dolocretes and quiet-water lacustrine deposits; and (vi) red-beds representing intertidal-marine mudflat deposits. Rivers flowed toward the northwest and northeast within karst valleys and caves; lakes were also situated within valleys; marine mudflat sediments completely cover the palaeokarst to the north. A regional correlation of the sub-Kanuyak unconformity with the intra-Greenhorn Lakes disconformity within the Coppermine homocline suggests that similar styles of karstification occurred over an extensive region. The Elu Basin palaeokarst, however, was developed more landward, and was exposed for a longer period of time than the Coppermine homocline palaeokarst

CAYMANITE, A CAVITY-FILLING DEPOSIT IN THE OLIGOCENE MIOCENE BLUFF FORMATION OF THE CAYMAN ISLANDS, 1992,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Jones B. ,
Caymanite is a laminated, multicoloured (white, red, black) dolostone that fills or partly fills cavities in the Bluff Formation of the Cayman Islands. The first phase of caymanite formation occurred after deposition, lithification, and karsting of the Oligocene Cayman Member. The second phase of caymanite formation occurred after joints had developed in the Middle Miocene Pedro Castle Member. Caymanite deposition predated dolomitization of the Bluff Formation 2-5 Ma ago. Caymanite is formed of mudstones, wackestone, packstones, and grainstones. Allochems include foraminifera, red algae, gastropods, bivalves, and grains of microcrystalline dolostone. Sedimentary structures include planar laminations, graded bedding, mound-shaped laminations, desiccation cracks, and geopetal fabrics. Original depositional dips ranged from 0 to 60-degrees. Although caymanite originated as a limestone, dolomitization did not destroy the original sedimentary fabrics or structures. The sediments that formed caymanite were derived from shallow offshore lagoons, swamps, and possibly brackish-water ponds. Pigmentation of the red and black laminae can be related to precipitates formed of Mn, Fe, Al, Ni, Ti, P, K, Si, and Ca, which occur in the intercrystalline pores. These elements may have been derived from terra rossa, which occurs on the weathered surface of the Bluff Formation. Caymanite colours were inherited from the original limestone. Stratigraphic and sedimentologic evidence shows that sedimentation was episodic and that the sediment source changed with time. Available evidence suggests that caymanite originated from sediments transported by storms onto a highly permeable karst terrain. The water with its sediment load then drained into the subsurface through joints and fissures. The depth to which these waters penetrated was controlled by the length of the interconnected cavity system. Upon entering cavities, sedimentation was controlled by a complex set of variables

HALITE SALTERN IN THE CANNING BASIN, WESTERN-AUSTRALIA - A SEDIMENTOLOGICAL ANALYSIS OF DRILL CORE FROM THE ORDOVICIAN-SILURIAN MALLOWA SALT, 1992,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Cathro Dl, Warren Jk, Williams Ge,
The Late Ordovician-Early Silurian Mallowa Salt of the Carribuddy Group, Canning Basin, north-west Australia, is the largest halite deposit known in Australia, attaining thicknesses of 800 m or more within an area of approximately 200 000 km2. Study of 675 m of drill core from BHP-Utah Minerals' Brooke No. 1 well in the Willara Sub-basin indicates that the Mallowa Salt accumulated within a saltern (dominantly subaqueous evaporite water body) that was subject to recurrent freshening, desiccation and exposure. Textures and bromine signatures imply a shallow water to ephemeral hypersaline environment typified by increasing salinity and shallowing into evaporitic mudflat conditions toward the top of halite-mudstone cycles (Type 2) and the less common dolomite/anhydrite-halite-mudstone cycles (Type 1). The borate mineral priceite occurs in the capping mudstones of some cycles, reinforcing the idea of an increasing continental influence toward the top of mudstone-capped halite cycles. The rock salt in both Type 1 and Type 2 cycles typically comprises a mosaic of large, randomly orientated, interlocking halite crystals that formed during early diagenesis. It only partially preserves a primary sedimentary fabric of vertically elongate crystals, some with remnant aligned chevrons. Intraformational hiati, halite karst tubes and solution pits attest to episodic dissolution. Stacked Type 2 cycles dominate; occasional major recharges of less saline, perhaps marine, waters in the same area produced Type 1 cycles. The envisaged saltern conditions were comparable in many ways to those prevailing during the deposition of halite cycles of the Permian Salado Formation in New Mexico and the Permian San Andres Formation of the Palo Duro Basin area in Texas. However, in the Canning Basin the cycles are characterized by a much lower proportion of anhydrite, implying perhaps a greater degree of continental restriction to the basin. The moderately high level of bromine in the Mallowa Salt (156.5 43.5 ppm Br for primary halite, 146.1 54.7 ppm Br for secondary halite) accords with evolved continental brines, although highly evaporative minerals such as polyhalite and magnesite are absent. The bromine levels suggest little or no dissolution/reprecipitation of primary halite and yet, paradoxically, there is little preservation of the primary depositional fabric. The preservation of early halite cements and replacement textures supports the idea of an early shutdown of brine flow paths, probably at burial depths of no more than a few metres, and the resultant preservation of primary bromine values in the secondary halite

POLYGENETIC ORIGIN OF HRAD-VALLIS REGION OF MARS, 1992,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Dehon Ra,
Hrad Vallis is located in the transition zone between Elysium Mons and Utopia Planitia. Near its origin, at the northern edge of Elysium lavas, Hrad Vallis is characterized by a low-sinuousity channel within a north-northwest-trending, broad, flat-floored valley. A nearby flat-floored valley is parallel to the Hrad trend and parallel to elongate depressions, fissures, and faults in the region. An apparent hierarchy of landforms provides insight into the origin of the features associated with Hrad Vallis. The sequence leading to the development of Hrad Vallis consists of the following (1) formation of isolated depressions as either karst depressions or thermokarst valleys along faults and fissures in response to circulating ground water; (2) expansion of depressions along structural trends to coalesce as composite valleys, and (3) incision of a channel on the floor of Hrad valley by continued discharge of water from the subsurface after its initial formation by nonfluvial processes. Mud flows, polygonally fractured terrain, and chaotic terrain near the head of the major valleys suggest thixotropic behavior of saturated, clay-rich materials. An extended period of time is indicated during which freely circulating water existed on id beneath the surface of Mars. Karst and thermokarst processes imply very different climatic regimes and different host materials. The presence of karst topography implies extensive deposition of carbonates or other soluble rocks, whereas the presence of thermokarst basins implies the existence of porous, water/ice-saturated clastic or volcaniclastic materials

Subsidence-sinkhole development in light of mud infiltrate structures within interstratal karst of the Coastal Plain, southeast United States, 1993,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Jancin M. , Clark D. D. ,

STABLE ISOTOPIC COMPOSITION OF METEORIC CALCITES - EVIDENCE FOR EARLY MISSISSIPPIAN CLIMATE-CHANGE IN THE MISSION CANYON FORMATION, MONTANA, 1993,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Smith T. M. , Dorobek S. L. ,
The Lower Mississippian Mission Canyon Formation of central to southwestern Montana was deposited under dominantly semiarid to arid climatic conditions during Osagean to early Meramecian times. Following deposition, a pronounced climatic shift to more humid conditions occurred during middle Meramecian times. This climatic change is indicated by extensive, post-depositional karst fabrics and in the stable isotopic composition of early, meteoric calcite cements and diagenetically altered sediments. Early meteoric calcite cement in Mission Canyon limestones is generally nonluminescent and fills intergranular and fenestral porosity. Petrographic data indicate that this cement formed during intermittent subaerial exposure of the Mission Canyon platform during Osagean times. This initial generation of meteoric calcite cement has deltaO-18 values from -8.1 to -2.6 parts per thousand PDB. These data, and the oxygen isotopic values from nonluminescent skeletal grains and micrite in host limestone indicate that Osagean meteoric water may have had deltaO-18 values as low as -6.0 parts per thousand SMOW. A second generation of petrographically similar, but isotopically distinct, calcite cement fills biomolds and porosity within solution-collapse breccias in the Mission Canyon Formation. This cement generation postdates earlier nonluminescent Osagean calcite cement and is volumetrically most abundant near the top of the Mission Canyon Formation. DeltaO-18 values from these cements and from nonluminescent lime mudstone clasts and matrix in solution collapse breccias range from -13.8 to -8.2 parts per thousand PDB. These data indicate that Meramecian meteoric water may have had deltaO-18 values as low as - 12.0 parts per thousand. However, a higher-temperature burial overprint on the deltaO-18 values of the calcite cement cannot be ruled out. The more positive deltaO-18 values of the Osagean calcite components probably indicate warm and arid conditions during short-term [10(4)(?) yr) subaerial exposure along intraformational sequence and parasequence boundaries. The more negative deltaO-18 values from Meramecian calcite components and the extensive karst associated with the post-Mission Canyon unconformity may have developed because of cooler and more humid climatic conditions and possible rain-out effects during middle Meramecian times. A dramatic shift towards cooler and more humid climatic conditions may be coincident with the onset of major continental glaciation in the Early Carboniferous. The post-Mission Canyon unconformity has been attributed to a major fall in sea level that may have glacio-eustatic origins. Growth of continental glaciers during a time of global cooling would have caused migration of polar fronts further toward the paleoequator. These polar fronts in turn, would have pushed moist, mid-latitude weather systems toward the paleoequator, resulting in cooler, more humid conditions in low-latitude settings during ''icehouse'' times

Synsedimentary collapse of portions of the lower Blomidon Formation (Late Triassic), Fundy rift basin, Nova Scotia, 1995,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Ackermann Rv, Schlische Pw, Olsen Pe,
A chaotic mudstone unit within the lower Blomidon Formation (Late Triassic) has been traced for 35 km in the Mesozoic Fundy rift basin of Nova Scotia. This unit is characterized by highly disrupted bedding that is commonly cut by small (<0.5 m) domino-style synsedimentary normal faults, downward movement of material, geopetal structures, variable thickness, and an irregular, partially faulted contact with the overlying unit. The chaotic unit is locally overlain by a fluvial sandstone, which is overlain conformably by mudstone. Although the thickness of the sandstone is highly variable, the overlying mudstone unit exhibits only gentle regional dip. The sandstone unit exhibits numerous soft-sediment deformation features, including dewatering structures, convoluted bedding, kink bands, and convergent fault fans. The frequency and intensity of these features increase dramatically above low points at the base of the sandstone unit. These stratigraphic relations suggest buried interstratal karst, the subsurface dissolution of evaporites bounded by insoluble sediments. We infer that the chaotic unit was formed by subsidence and collapse resulting from the dissolution of an evaporite bed or evaporite-rich unit by groundwater, producing dewatering and synsedimentary deformation structures in the overlying sandstone unit, which infilled surface depressions resulting from collapse. In coeval Moroccan rift basins, facies similar to the Blomidon Formation are associated with halite and gypsum beds. The regional extent of the chaotic unit indicates a marked period of desiccation of a playa lake of the appropriate water chemistry. The sedimentary features described here may be useful for inferring the former existence of evaporites or evaporite-rich units in predominantly elastic terrestrial environments

TECTONIC AND PALEOCLIMATIC SIGNIFICANCE OF A PROMINENT UPPER PENNSYLVANIAN (VIRGILIAN STEPHANIAN) WEATHERING PROFILE, IOWA AND NEBRASKA, USA, 1995,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Joeckel R. M. ,
A Virgilian (Stephanian) weathering profile up to 4 m deep, containing a paleosol (basal Rakes Creek paleosol) in the basal mudstone of the Rakes Creek Member and karstified marine sediments in the Ost, Kenosha, and Avoca members below, is restricted to southeastern Nebraska (specifically the Weeping Water Valley) and the Missouri River Valley bluffs of adjacent easternmost Iowa. This weathering profile, informally referred to as the Weeping Water weathering profile, disappears farther eastward into the shallow Forest City Basin in southwestern Iowa. Weeping Water weathering profile features are prominent in comparison to other Midcontinent Pennsylvanian subaerial exposure surfaces, indicating prolonged subaerial exposure, relatively high elevation, and a marked drop in water table along the Nemaha Uplift in southeastern Nebraska. Eastward, on the margin of the Forest City Basin, the basal Rakes Creek paleosol and underlying karst are thinner and relatively poorly developed; paleosol characteristics indicate formation on lower landscape positions. Comparative pedology, the contrasting of paleosol variability, morphology, and micromorphology between different paleosols in the same regional succession, provides a basis for interpreting the larger significance of the basal Rakes Creek paleosol. The stratigraphically older upper Lawrence and Snyderville paleosols in the same area are significantly different in patterns of lateral variability and overall soil characteristics. Weaker eustatic control and stronger tectonic activity may explain the greater west-east variability (and eventual eastward disappearance) of the basal Rakes Creek paleosol. Differences in soil characteristics between the Vertisol-like upper Lawrence and Snyderville paleosols and the non-Vertisol-like basal Rakes Creek paleosol appear to be due to climate change, particularly a shift from more seasonal to more uniform rainfall. This climate change hypothesis is compatible with overall Virgilian stratigraphic trends in the northern Midcontinent outcrop area

Karst development in the Bahamas and Bermuda, 1995,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Mylroie J. E. , Carew J. L. , Vacher H. L.

Digital shaded relief image of a carbonate platform (northern Great Bahama Bank); scenery seen and unseen, 1996,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Boss Sk,
A mosaic image of the northern Great Bahama Bank was created from separate gray-scale Landsat images using photo-editing and image analysis software that is commercially available for desktop computers. Measurements of pixel gray levels (relative scale from 0 to 255 referred to as digital number, DN) on the mosaic image were compared to bank-top bathymetry (determined from a network of single-channel, high-resolution seismic profiles), bottom type (coarse sand, sandy mud, barren rock, or reef determined from seismic profiles and diver observations), and vegetative cover (presence and/or absence and relative density of the marine angiosperm Thalassia testudinum determined from diver observations). Results of these analyses indicate that bank-top bathymetry is a primary control on observed pixel DN, bottom type is a secondary control on pixel DN, and vegetative cover is a tertiary influence on pixel DN. Consequently, processing of the gray-scale Landsat mosaic with a directional gradient edge-detection filter generated a physiographic shaded relief image resembling bank-top bathymetric patterns related to submerged physiographic features across the platform. The visibility of submerged karst landforms, Pleistocene eolianite ridges, islands, and possible paleo-drainage patterns created during sea-level lowstands is significantly enhanced on processed images relative to the original mosaic. Bank-margin ooid shoals, platform interior sand bodies, reef edifices, and bidirectional sand waves are features resulting from Holocene carbonate deposition that are also more clearly visible on the new physiographic images. Combined with observational data (single-channel, high-resolution seismic profiles, bottom observations by SCUBA divers, sediment and rock cores) across the northern Great Bahama Bank, these physiographic images facilitate comprehension of areal relations among antecedent platform topography, physical processes, and ensuing depositional patterns during sea-level rise

Overview of the Human Use of Caves in Virginia: A 10,500 Year History, 1997,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Barber, M. B. , Hubbard Jr. , D. A.
The human utilization of caves within the Commonwealth of Virginia began early in prehistoric times and has extended to the present. Such use often has focused on the exploitation of removable resources; knappable lithic materials for the production of stone tools is an important prehistoric example. During historic times, the mining of saltpetre dominates although other natural resources also were removed. The human interaction with caves, however, extends well beyond raw material extraction into the realm of ceremonialism and supernaturalism. Within a Virginia context, Native American use of caves includes both human interments and the codification of symbols. Cave burials have long been known and appear to include attitudes of elaborate ceremonialism as well as less intricate body disposal systems. The mud glyph cave phenomenon has been recorded in Virginia with incised designs and anthropomorphic figures apparently mediating between the sacred and the mundane. Such symbols have roles in rites of passage. Historic use usually is framed in a more functional light. While resource extraction is an obvious utilization realm, the historic use of caves for other purposes is prevalent and includes resort recreation, scientific study, aesthetics, and general exploration. Caves can be discussed in terms of modern symbols and ceremonialism

Harlansburg Cave: The Longest Cave in Pennsylvania, 1997,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Fawley, J. P. , Long, K. M.
Harlansburg Cave is a network maze developed in the Vanport Limestone. The cave covers an area of approximately 200 meters by 200 meters, and 6647 meters of passage have been mapped. Typical passages are mud and water floored. Three pools in the southern portion of the cave were studied for their geological and biological characteristics. Geological studies indicate the cave to be a reservoir for water seepage from the overlying fields. The water is highly aggressive as a result of the overlying Kittaning Sandstone. Biological analysis indicate that the bacteria/actinomycete populations are the result of infiltration from the overlying fields. The exception is Hafnia sp. which apparently arises from the raccoon population which frequents areas of the cave

Results 16 to 30 of 96
You probably didn't submit anything to search for