MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology

Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That dry valley is 1. valley that lacks a permanent surface stream. dry valleys are common on carbonate rocks with good primary permeability and occur on other permeable rocks such as sandstone. dry valleys on cavernous limestone were formed when streams flowed on the surface, either before secondary permeability and cave systems developed, or when caves were blocked by ground ice in periglacial climates. the valleys became dry when underground drains formed or were re-opened, capturing first part and then all of the surface drainage [9].2. a valley that lacks a surface water channel; common in the chalk of southern england [10]. 3. elongated recesses and valleys at the bottom of which are dolines, jamas and caves. 4. a valley form of fluvial or periglacial origin in which surface drainage is intermittent or totally absent. fossil, usually with steep scree slopes, it is variously identifiable as a product of nival processes or higher water tables subsequently lowered by allogenic valley [19]. synonyms: (french.) vallee seche; (german.) trockental; (greek.) xera kilas; (italian.) valle morta, valle asciutta; (russian.) suhaja dolina; (spanish.) valle seco; (turkish.) kuru vadi; (yugoslavian.) suha dolina.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for geophysic (Keyword) returned 162 results for the whole karstbase:
Showing 151 to 162 of 162
Seismic study of the low-permeability volume in southern France karst systems, 2013, Galibert P. Y. , Valois R. , Mendes M. , Gurin R.

Locating groundwater in deep-seated karst aquifers is inherently difficult. With seismic methods, we studied the upper epikarst and the underneath low-permeability volume (LPV) of several karst systems located in the southern Quercy and Larzac regions of France and found that refraction tomography was effective only in the epikarst and not in the LPV. We evaluated a 3D case study using a combination of surface records and downhole receivers to overcome this limitation. This 3D approach unveiled a set of elongated furrows at the base of the epikarst and identified heterogeneities deep inside the LPV that may represent high-permeability preferred pathways for water inside the karst. To achieve the same result when no borehole was available, we studied seismic amplitudes of the wavefield, recognizing that wave-induced fluid flow in low-permeability carbonates is a driving mechanism of seismic attenuation. We developed a workflow describing the heterogeneity of the LPV with spectral attributes derived from surface-consistent decomposition principles, and we validated its effectiveness at benchmark locations. We applied this workflow to the 3D study and found a low-amplitude signal area at depth; we interpreted this anomaly as a water-saturated body perched above the aquifer.


Proceedings of the Thirteenth Multidisciplinary Conference on Sinkholes and the Engineering and Environmental Impacts of Karst, 2013,

These proceedings represent the talks, posters, and symposia presented at the 13th Multidisciplinary Conference on Sinkholes and the Engineering and Environmental Impacts of Karst, which took place in Carlsbad, New Mexico, at the NCKRI headquarters, May 6-10, 2013. This international conference series creates a better understanding of environmental issues and geohazards associated with karst environments.
This 480 page volume contains 52 peer-reviewed papers organized under the following headings: a) Engineering and Geotechnical Aspects of Karst, b) Evaporite Karst, c) Geophysical Investigations in Karst Terrain, d) Formation Processes of Karst and Sinkholes, e) Karst Hydrology, and f) Mapping and Management of Karst Regions.


TOWARDS A KARST ASSESSMENT STANDARD PRACTICE, 2013, Denton, Jr. R. K.

The assessment of karst conditions and putative karst geohazards prior to residential and commercial development is currently in its infancy, from a scientific aspect. Borrowing from the medical lexicon, most karst features at proposed building sites are dealt with using an approach wherein the “symptoms and conditions” are treated (e.g. sinkhole remediation), often only after site development activities have commenced. If karst hazards are suspected, roadways, foundations and specific at-risk areas may be investigated using various geophysical methods; however the results of these investigations require specialized knowledge to be interpreted and understood. Thus stakeholders without geological training may find the investigator’s results indecipherable, often leading to unnecessary and expensive supplemental studies, the need for which is entirely based on the non-technical stakeholder’s faith in the investigator’s judgment.
In contrast, a recent trend among consulting firms is to attach cursory karst “assessments” to due diligence study reports, particularly Phase I Environmental Site Assessments. These combined assessments are often performed by individuals who are inexperienced in geology, often without any specific training in karst geology. Not unexpectedly, this can lead to numerous mistakes, errors, and oversights. More troubling, these studies often report a lack of karst risks at the site under study, a result that the stakeholders may initially embrace, but which later can result in substantial financial loss and/or significant threats to human health and the environment.
To address these concerns, we propose a proactive, “preventative” standard practice for karst assessments. Ideally, this proactive approach will help to delineate potential karst hazards so that they can be avoided, managed, or corrected by remediation. Requirements for investigators, a proposed scope of services, fieldwork and data review checklist, and a template for a follow-up karst management plan are presented. It is our hope that if carried out and reported accurately, the proposed assessments should allow even a non-technical stakeholder to make informed decisions regarding the relative risk of karst geohazards, the need for further studies, and potential corrective actions that site development may entail.


COVER-COLLAPSE SINKHOLE DEVELOPMENT IN THE CRETACEOUS EDWARDS LIMESTONE, CENTRAL TEXAS, 2013, Hunt B. B. , Smith B. A. , Adams M. T. , Hiers S. E. , Brown N.

Sudden cover-collapse sinkhole (doline) development is uncommon in the karstic Cretaceous-age Edwards limestone of central Texas. This paper presents a case-study of a sinkhole that formed within a stormwater retention pond (SWRP) in southwest Austin. Results presented include hydrogeologic characterizations, fate of stormwater, and mitigation of the sinkhole. On January 24, 2012, a 11 cm (4.5 in) rainfall filled the SWRP with about 3 m (10 ft) of stormwater. Subsequently, a sinkhole formed within the floor of a SWRP measuring about 9 m (30 ft) in diameter and 4 m (12 ft) deep. About 26.5 million liters (7 million gallons) of stormwater drained into the aquifer through this opening. To determine the path, velocity, and destination of stormwater entering the sinkhole a dye trace was conducted. Phloxine B was injected into the sinkhole on February 3, 2012. The dye was detected at one well and arrived at Barton Springs in less than 4 days for a minimum velocity of 2 km/day (1.3 mi/day).Review of pre-development 2-foot topographic contour and geologic maps reveals that the SWRP was built within a broad (5,200 m2; 6 acre), shallow depression bounded by two inferred NE-trending fault zones. Photographs taken during SWRP construction showed steep west-dipping bedrock in the northern SWRP wall. Following collapse of the sinkhole, additional hydrogeologic characterization included excavation to a depth of 6.4 m (21 ft), surface geophysics (resistivity), and rock coring. Geologic materials consisted mostly 89of friable, highly altered, clayey limestone consistent with epikarst in-filled with terra rosa providing a cover of the feature. Dipping beds, and fractured bedrock support proximity to the mapped fault zone. Geophysics and surface observations suggested a lateral pathway for stormwater flow at the junction between the wet pond’s impermeable geomembrane and compacted clay liner for the retention pond. The collapse appears to have been caused by stormwater down-washing poorly consolidated sediments from beneath the SWRP and into a pre-existing karst conduit system.

Mitigation of the sinkhole included backfill ranging from boulders to gravel, a geomembrane cover, and reinforced concrete cap. Additional improvements to the SWRP included a new compacted clay liner overlain by a geomembrane liner on the side slopes of the retention pond.


SALT KARST AND COLLAPSE STRUCTURES IN THE ANADARKO BASIN OF OKLAHOMA AND TEXAS, 2013, Johnson, K. S.

Permian bedded salt is widespread in the Anadarko Basin of western Oklahoma and the Texas Panhandle, where partial or total dissolution of the shallowest salt in some areas has resulted in subsidence and/or collapse of overlying strata. Groundwater has locally dissolved these salts at depths of 10–250 m. The distribution (presence or absence) of salt-bearing units, typically 80–150 m thick, is confirmed by interpretation of geophysical logs of many petroleum tests and a few scattered cores. Salt dissolution by ground water is referred to as “salt karst.”Chaotic structures, collapse features, breccia pipes, and other evidence of disturbed bedding are present in Permian, Cretaceous, and Tertiary strata that overly areas of salt karst. The dip of Permian and post-Permian strata in the region normally is less than one degree, mainly towards the axis of the Anadarko Basin. Where strata locally dip in various directions at angles of 5–25 degrees or more, and underlying salt units show clear evidence of dissolution, these chaotic dips must result (mostly, if not totally) from subsidence and collapse into underlying salt-dissolution cavities.Gypsum karst and resultant collapse of overlying strata have been proposed in many parts of the Anadarko Basin. However, the gypsum beds typically are only 1–6 m thick and more than 100 m deep, and cannot contribute to disruption of outcropping strata—except where they are within 10–20 m of the surface.Typical areas of disturbed bedding comprise several hectares, or more, with outcrops of moderately dipping strata—as though large blocks of rock have foundered and subsided into large underground cavities. Other examples of disturbed bedding are small-diameter breccia pipes, or chimneys, that extend vertically up from salt-karst cavities, through several hundred meters of overlying strata. The best evidence of these chimneys are collapsed blocks of Cretaceous strata, chaotically dropped some 50 m, or more, that are now juxtaposed against various Permian formations on the north flank of the Anadarko Basin. Any study of surface or shallow-subsurface geology in the Anadarko Basin must consider the influence of subsurface salt karst on the structure and distribution of overlying rocks


GYPSUM KARST CAUSES RELOCATION OF PROPOSED CEDAR RIDGE DAM, THROCKMORTON COUNTY, TEXAS, 2013, Johnson K. S. , Wilkerson J. M.

Cedar Ridge Dam and Reservoir will be built to supply water for the city of Abilene, Texas. The original damsite (CR) was to be located on Clear Fork of Brazos River in Throckmorton County, but initial coring of the damsite encountered unsuspected gypsum beds in the Permian-age Jagger Bend/Valera Formation. Gypsum is a highly soluble rock that typically contains karst features, and its presence in a dam foundation or impoundment area could allow water to escape from the reservoir. A decision was made to look at potential sites farther upstream (to the southwest), where west-dipping gypsum beds would be deeper underground and karst problems would be minimized or eliminated.The first phase of the relocation was a comprehensive field study of Clear Fork Valley, upstream of the original damsite, to identify gypsum outcrops; gypsum was exposed at only one location, just above damsite CR. The second phase of the study was examination of nearly 100 petroleum-test geophysical logs to identify, correlate, and map the subsurface gypsum and associated rock layers upstream of the original damsite. The gypsiferous sequence is 30–45 m thick, and consists of 8 gypsum beds, mostly 1–3 m thick, interbedded with red-brown and gray shale units 1–10 m thick. Gypsum beds comprise 25–30% of the gypsiferous sequence. Gypsum beds dip uniformly to the west at about 7 m/km (about 0.4 degrees), and thus the uppermost gypsum is at least 23 m beneath the newly proposed damsite (A), about 8 km to the southwest.Subsequent coring and other studies of the new damsite A confirm that gypsum beds are 23 m beneath the newly proposed dam. There is no evidence of solution channels or other karst features beneath this site, and thus there is little likelihood of water loss from the reservoir at the new site due to gypsum karst.


GEOPHYSICAL INVESTIGATIONS OF THE EDWARDS-TRINITY AQUIFER SYSTEM AT MULTIPLE SCALES: INTERPRETING AIRBORNE AND DIRECT-CURRENT RESISTIVITY IN KARST, 2013, Gary M. O. , Rucker D. F. , Smith B. D. , Smith D. V. , Befus K.

Electrical and electromagnetic geophysical characterization is a proven tool for delineating obscured subterranean karstic features, such as caves, sinkholes, and solution enlarged fissures. Geophysical characterizations allow a wide range of deployment scales; airborne methods can accommodate a regional view on the order of kilometers, and ground-based methods can follow up with focused data on the order of meters. A helicopter frequency domain electro-magnetic (HFDEM) survey and ground-based direct-current electrical resistivity imaging (DC-ERI) geophysical studies at the Camp Bullis Military Training Site (Camp Bullis) in central Texas have been used to characterize permeability properties of the Edwards and Trinity Aquifers in the area. Results of three separate investigations identified zones of high density karst features and characterized specific karstic voids, including caves. In 2003, the USGS completed an HFDEM survey of Camp Bullis and nearby areas to map and image subsurface features related to the groundwater resources. The survey refined locations of mapped and previously unmapped faults and characterized the heterogeneity of the subsurface electrical signature. Karst mapping at Camp Bullis identified over 1500 features, and high density zones of features correspond with areas of high resistivity from the HEM data. DC-ERI surveys at several locations were used to infer and characterize known and hypothesized karst features. Site 8 suggests an inferred fault and 195dissolution feature. Two other sites were surveyed near major caves that directly recharge the Trinity Aquifer (indirectly to Edwards Aquifer) along Cibolo Creek. Integration of multi-scale geophysical datasets could be used to augment aquifer-wide recharge characterization and quantification.


EVAPORITE KARST IN THE PERMIAN BASIN REGION OF WEST TEXAS AND SOUTHEASTERN NEW MEXICO: THE HUMAN IMPACT , 2013, Land, Lewis

A significant minority of sinkholes in the greater Permian Basin region of west Texas and southeastern New Mexico are of human origin. These anthropogenic sinkholes are often associated with historic oil field activity, or with solution mining of Permian salt beds in the shallow subsurface. The well-known Wink Sinks in Winkler Co., Texas formed in 1980 and 2002 within the giant Hendrick oil field. The Wink Sinks were probably the result of subsurface dissolution of salt caused by fresh water leakage in improperly cased abandoned oil wells. In 2008 two catastrophic sinkhole events occurred a few months apart in northern Eddy Co., New Mexico, and a third formed a few months later in 2009 near Denver City, Texas. All three sinkholes were the result of solution mining operations for brine production from Upper Permian salt beds. The Eddy Co. sinkholes formed within the giant Empire oil and gas field, several kilometers from populated areas. In the aftermath of these events, another brine well operation was identified within the city limits of Carlsbad, New Mexico as having a similar geologic setting and pumping history. That well has been abandoned and geotechnical monitoring of the site has been continuous since 2008. Although there is no indication of imminent collapse, geophysical surveys have identified a substantial void in Permian salt beds beneath the brine well extending north and south beneath residential areas, a major highway intersection, a railroad, and an irrigation canal


Fault — Dissolution front relations and the Dead Sea sinkhole problem, 2013, Ezersky Michael, Frumkin Amos

There are two conflicting models of sinkhole development along the Dead Sea (DS). The first one considers structural control on sinkholes, constraining them to tectonic lineaments. This hypothesis is based on seismic reflection studies suggesting that sinkholes are the surface manifestations of active neotectonic faults that may serve as conduits for under-saturated groundwater, enabling its access across aquiclude layers. Another hypothesis, based on results of multidisciplinary geophysical studies, considers the salt edge dissolution front as themajor site of sinkhole formation. This hypothesis associates sinkholes with karstification of the salt edge by deep and shallow undersaturated groundwater. Our recent seismic reflection and surface wave studies suggest that salt formed along the active neotectonic faults. Sinkholes form in a narrow strip (60–100 m wide) along a paleo-shoreline constrained by faults and alluvial fans which determined the edge of the salt layer. This scenario reconciles the two major competing frameworks for sinkhole formation.


From Slots to Tubes: The Influence of Dimensionality on Fracture Dissolution Models, 2013, Szymczak, Piotr

We briefly review the models of fracture dissolution process, discussing the experimental and numerical evidence showing that this phenomenon is inherently two-dimensional and hence cannot be accurately described by one-dimensional models. The physical reason for this incompatibility is that a dissolution front in a single rock fracture is potentially unstable to small variations in local permeability, leading to spontaneous formation of dissolution channels in the rock. This leads to a dramatic increase of fissure opening rates, which must be taken into account not only in the estimation of karstification times but also in the assessment of ground subsidence, dam collapse or toxic seepage risks.


Karst water resources in a changing world: Review of hydrological modeling approaches, 2014,

Karst regions represent 7–12% of the Earth’s continental area, and about one quarter of the global population is completely or partially dependent on drinking water from karst aquifers. Climate simulations project a strong increase in temperature and a decrease of precipitation in many karst regions in the world over the next decades. Despite this potentially bleak future, few studies specifically quantify the impact of climate change on karst water resources. This review provides an introduction to karst, its evolution, and its particular hydrological processes. We explore different conceptual models of karst systems and how they can be translated into numerical models of varying complexity and therefore varying data requirements and depths of process representation. We discuss limitations of current karst models and show that at the present state, we face a challenge in terms of data availability and information content of the available data. We conclude by providing new research directions to develop and evaluate better prediction models to address the most challenging problems of karst water resources management, including opportunities for data collection and for karst model applications at so far unprecedented scales


Initial conditions or emergence: What determines dissolution patterns in rough fractures?, 2015,

Dissolution of fractured rocks is often accompanied by the formation of highly localized flow paths. While the fluid flow follows existing fractures in the rock, these fissures do not, in general, open uniformly. Simulations and laboratory experiments have shown that distinct channels or “wormholes”develop within the fracture, from which a single highly localized flow path eventually emerges. The aim of the present work is to investigate how these emerging flow paths are influenced by the initial aperture field. We have simulated the dissolution of a single fracture starting from a spatially correlated aperture distribution. Our results indicate a surprising insensitivity of the evolving dissolution patterns and flow rates to the amplitude and correlation length characterizing the imposed aperture field. We connect the similarity in outcomes to the self-organization of the flow into a small number of wormholes, with the spacing determined of the longest wormholes. We have also investigated the effect of a localized region of increased aperture on the developing dissolution patterns. A competition was observed between the tendency of the high-permeability region to develop the dominant wormhole and the tendency of wormholes to spontaneously nucleate throughout the rest of the fracture. We consider the consequences of these results for the modeling of dissolution in fractured and porous rocks.


Results 151 to 162 of 162
You probably didn't submit anything to search for