MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology

Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 5
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That piton is 1. (french.) limestone hill having sharply pointed peak [10]. 2. a solid or folded metal spike, of steel or other alloy, to be driven into a crack in the rock to form an anchor [25].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 7
What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for relief (Keyword) returned 158 results for the whole karstbase:
Showing 31 to 45 of 158
Observations sur le karst de Bardas Blancas-Malarge (Andes de Mendoza, Argentine), 1995,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Mikkan, R. A.
The karst of Bardas Blancas, situated south of Mendoza province, deve-lops in Jurassic and Cretaceous limes-tones. The continental and semi-arid climate (300 mm/year) is characterized by temperate summers and cold winters. The periglacial processes are actives. The relief presents a semi-karstic morphology: structural landforms ("Schichttreppenkarst" with cuestas) and afew dolines, swallow-holes and pavements. The Los Brujas cave, about 1 000 m long, shows a labyrinthic network (3 siaged levels) with phreatic passages. The impor-tant gypsum speleothems (crusts, flowers) in the lower level and the calcite-opale speleothems indicate an hydrothermal speleogenesis (dissolution by sulfuric acid and gypsum deposit). The actual and active tectogenesis of this region (uphft, hydrothermalism, volcanism) plays an important part in the geomorphological evolution.

Book Review: ''Cave rocky relief and its Speleogenetical significance'' by T. Slabe, 1995, 1996,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Brown L.

Geology of a Large, High-Relief, Sub-Tropical Cave System: sistema Purificacin, Tamaulipas, Mexico, 1996,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Hose, Louise D.

Hydrology of a Large, High-Relief, Sub-Tropical Cave System: sistema Purificacin, Tamaulipas, Mexico, 1996,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Hose, Louise D.
Streams in the upper portion of the system mostly follow the dip of bedding near the Tamabra-Tamaulipas contact until trapped in the trough of a third-order syncline. Vadose flow in the middle part of the cave system follows axial plane fractures. The trough of the north-trending Infiernillo syncline, and the impervious underlying La Joya beds act as a local hydrologic barrier perching water in the lower carbonates and filling chambers in the lowest parts of Sistema Purificacin.

Les Forts de Pierre ou Stone forests de Lunan (Yunnan, Chine), 1996,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Ford D. , Salomon J. N. , Williams P.
"Stone forests " are well known in Southern China. We describe the type site in Lunan County on the Yunnan Plateau at about 1800 m. "Stone forests " are a spectacular form of karren, similar to the "tsingy" of Madagascar or pinnacles of Mulu. In Yunnan they are developed in massive Permian limestones and dolomites. The "Stone forests" are high fluted towers, typically more ruiniform in dolostones, that attain 20-30m in height, exceptionally 40m. They occur in patches of several square kilometres in extent in a rolling polygonal karst landscape with about 150 m local relief Three phases of evoluti6n are recognized spanning 250 Ma from the Permian until the present: 1) Mid Permian karstification and burial by Upper Permian continental basalts, 2) Mesozoic erosion and re-karstification, then burial in the Eocene by thick continental deposits, 3) Late Tertiary and Quaternary exhumation and re-karstification. No other "Stone forests" in the world show this complexity of evolution.

Le karst du canyon du Lobos et son fonctionnement hydrogologique (Soria, Espagne), 1996,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Sanzperez, E.
The massif of River Lobos, NW of the Iberian Range, is characterised by an important karst crossed by a canyon 26 km long. This canyon was dug into the Cretaceous limestones from a gradually eroded Neogene impervious cover by allogenic waters. The Cretaceous aquifer is drained by La Galiana spring. The general characteristics of the karstic relief and its hydrogeological functioning are descri-bed in this study. La Galiana spring is simulated by a mathematical model of precipitation-water flow. The results show a 4 to 5 day delay between precipi-tation and the spring flow.

The induration process of goethitic oxisols on peridotites in New Caledonia: A singular plinthite-type process of induration, 1996,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Podwojewski P. , Bourdon E. ,
The strong chemical weathering of peridotites in New Caledonia generates goethitic oxisols acid a karstic relief. A rapid decrease of a water-table at the bottom of a doline leads to a rapid, massive and continuous induration of iron oxide at the interface between an oxidizing and a reducing environment. Goethite precipitates in a reticular network, pseudomorphs after plant cells and could be associated with lepidocrocite, siderite and rhodochrosite. These hardpans could not be strictly considered as ferricretes

Digital shaded relief image of a carbonate platform (northern Great Bahama Bank); scenery seen and unseen, 1996,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Boss Sk,
A mosaic image of the northern Great Bahama Bank was created from separate gray-scale Landsat images using photo-editing and image analysis software that is commercially available for desktop computers. Measurements of pixel gray levels (relative scale from 0 to 255 referred to as digital number, DN) on the mosaic image were compared to bank-top bathymetry (determined from a network of single-channel, high-resolution seismic profiles), bottom type (coarse sand, sandy mud, barren rock, or reef determined from seismic profiles and diver observations), and vegetative cover (presence and/or absence and relative density of the marine angiosperm Thalassia testudinum determined from diver observations). Results of these analyses indicate that bank-top bathymetry is a primary control on observed pixel DN, bottom type is a secondary control on pixel DN, and vegetative cover is a tertiary influence on pixel DN. Consequently, processing of the gray-scale Landsat mosaic with a directional gradient edge-detection filter generated a physiographic shaded relief image resembling bank-top bathymetric patterns related to submerged physiographic features across the platform. The visibility of submerged karst landforms, Pleistocene eolianite ridges, islands, and possible paleo-drainage patterns created during sea-level lowstands is significantly enhanced on processed images relative to the original mosaic. Bank-margin ooid shoals, platform interior sand bodies, reef edifices, and bidirectional sand waves are features resulting from Holocene carbonate deposition that are also more clearly visible on the new physiographic images. Combined with observational data (single-channel, high-resolution seismic profiles, bottom observations by SCUBA divers, sediment and rock cores) across the northern Great Bahama Bank, these physiographic images facilitate comprehension of areal relations among antecedent platform topography, physical processes, and ensuing depositional patterns during sea-level rise

Geomorphological evidence for anti-Apennine faults in the Umbro-Marchean Apennines and in the peri-Adriatic basin, Italy, 1996,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Coltorti M, Farabollini P, Gentili B, Pambianchi G,
The Apennines are a relatively recent mountain chain which has been affected by uplift movements since the Upper Pliocene. In fact the remnants of an “erosional surface”, reduced close to base level, is preserved at the top of the relief. There is no general agreement on the geodynamic stress field and mechanisms which are creating the chain. However, it is largely accepted that uplift occurred together with the activation, on the western side of the chain, of extensive faults, oriented in the Apennine direction (NW-SE), which have been linked to the opening of the Tyrrhenian sea. A great debate is going on about the presence and significance of anti-Apennine faults (NE-SW) which have been observed by some authors but completely denied by others.The main evidence is represented by[ (1) block faulting of the remnants of the “erosional surface”. Along the Marchean Ridge, more elevated relief, delimiting relatively depressed areas, was created in correspondence with the Sibillini Mts. and Mt. S. Vicino. Similar evidence has been found in the Umbro-Marchean Ridge. Locally more than 1500 metres of displacement have been observed between more and less uplifted remnants. (2) Block faulting of fan deltas and related beaches, of Sicilian to Crotonian age, with more elevated sediments preserved between the Tronto and Tenna rivers and between the Musone and Esino rivers. Maximum displacement along a transect parallel to the coast is 200 metres. (3) fault-scarps affecting the Middle Pleistocene river terraces, as observed along the Esino, the Tronto, the Chienti and the Tenna river valleys. Maximum displacements are in the order of 50 metres. (4) Faulting of horizontal karst galleries and reorientation of the cave network, as in the Frasassi Gorge. Maximum displacements are about 100 metres. (5) Captures and alignments in the drainage network of the main river courses. (6) Large-scale gravitational movements, as in the Ancona landslide, and along the Chienti and Esino rivers.Their activation occurred in most cases after the Lower Pleistocene and although their displacements may be of relatively limited extent, dispite their recent activity, they played a major role in the modelling of the landscape. These faults display transtensive, extensional and trascurrent movements. Apart from the controversial geodynamic significance of these faults, from a geomorphological point of view they must be considered transverse elements of the stress field from blocks more or less uplifted along the Apennine chain.The importance and timing of activity of these faults in the Quaternary geomorphological evolution of the Umbria-Marchean Apennines is demonstrated using evidence usually underestimated by structural geologists, which can contribute to a debate based on a multidisciplinary approach

A stepped karst unconformity as an Early Silurian rocky shoreline in Guizhou Province (South China), 1996,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Jiayu R. , Johnson M. E. ,
There succeeded by marine strata, karst unconformities signify a former rocky coastline. Such relationships may help sort out relative sea-level changes and aspects of local geography controlling facies distribution. An exceptional example of an early Silurian karst shore is well exposed near the village of Wudang in central Guizhou Province, near the capital city of Guiyang in South China. Here the Lower Silurian Kaochaitien Formation oversteps 63 m of paleotopographic relief in limestones belonging to the Llanvirn Guniutan Formation and Caradoc to early Ashgill Huanghuachong Formation (Ordovician). The corresponding rise in sea level took place coeval with tectonic uplift, as confirmed by a regionally diachronous relationship in the Ordovician-Silurian boundary across a 250 km track from central to northern Guizhou Province. The change in sea level also fits with a global rise of sea level in late Aeronian (later Llandovery, early Silurian) time. Borings of the ichnofossil, Trypanites, are reported from the karst surface of the Huanghuachong Formation and Silurian strata hh sink holes in this unit over 5 m deep. The Silurian karst shoreline near Wudang is integrated with other regional data to construct a paleogeographic map covering the northern half of Guizhou Province

Theoretical model of surface karstic processes, 1996,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Veress M. , Pentek K. ,
Our study improves theories of denudation of karst surfaces. We examine a debris zone developed mostly by solutional fragmentation of the fissured rock. Denudation of karsts is attributed to the downward movement of the debris zone. The different rates of this movement in a karst region cause different denudation rates and so wight result in the development of dolinas. Therefore our model might be suitable for the explanation and description of the development of solution dolines. According to the differential equation of solution, the migration rate of the karstic relief is determined by the CO2 production, the soaking time and the average diameter of the fragments of the debris zone. According to the above - supposing constant parameters of karstification - the time of denudation at any point of a karstic area can be also calculated when knowing the original thickness of the rock exposed to karstic denudation. The age of a solution doline can be determined by the formula obtained

Ground-water silicifications in the calcareous facies of the Tertiary piedmont deposits of the Atlas Mountain (Hamada du Guir, Morocco), 1997,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Thiry M. , Benbrahim M. ,
The Tertiary piedmont deposits (Hamada Formations), on the southern edge of the Haut-Atlas mountains, form extensive tablelands in the Boudenib area. They consist of two main sedimentary sequences, the Hamada de Boudenib and the Hamada du Guir, of Eocene and Miocene age. Both sequences show elastic facies at their base (conglomerates, calcareous sandstones, silty clays) and end with thick lacustrine limestones and pedogenic calcretes are characterised by rather confined facies, palygorskite-rich, with some gypsum in the second sequence. The recent evolution of the region is marked by the dissection of the tableland that is lined with high cliffs. The water flaw is mainly through wide karst features as there is no major river on the tableland. Silicifications which affect the different facies, form pods of various shape and size, and show an erratic spatial distribution. In the calcareous sandstones, there are irregularly shaped tubules of about 5 cm in diameter, more planar bodies from 5 to 50 cm thick, which frequently display voids lined with translucent silica concretions. The conglomerates display relatively few silicifications, the more characteristic ones consist of a silica cortex on some Limestone pebble and silica plates fitting closely the base of the pebbles. The lacustrine limestones and the calcretes from the upper part of the formation show frequently well developed silicifications. These show very variable shapes; horizontally stretching layers, interconnected or isolated amoeba-like bodies, thin slabs, karst micro-breccia, with frequent concretionnary structures, and quartz crystallisations. Limestone nodules remain often included in these silicifications. The more argillaceous facies display either small tubules or thin plates formed of translucent concretionnary silica. As a rule, the importance of the voids and related structures (concretions, drusy crystals) has to be noticed in all these silicifications, sometimes they are also linked with fractures or karst pipes. Petrography of the silica minerals, their relation with the primary structures. their distribution and their succession, give invaluable information on the silicification processes. Microcrystalline and fibrous quartz are the most common silica minerals, including minor amounts of opal and euhedral quartz. But micrographic arrangements show clearly that primary opal deposits have been more extensive and have recrystallized into chalcedony, microcrystalline quartz, or even ''flame-like'' quartz. Silica deposits in voids make up an important part of the silica pods. The tubules and thin plates of translucent silica of the argillaceous facies are formed of laminar chalcedony deposited around voids. Silica deposits in voids are also particularly obvious in the sandstones. The pores between the quartz grains are then cemented by fibrous quartz and little opal. Some samples show very large cemented voids that cannot be related to the primary porosity of the sandstone. These large voids correspond to the dissolution of the primary calcareous cement, which even led to the collapse of the sandstone fabric. In the limestones, there are silicified micro-karst breccia with a very high primary porosity cemented by quartz crystals, and even in the large microcrystalline quartz zones there are numerous void fillings, the primary porosity often exceeding 50%. There is obviously the alternation of silica deposits and calcite dissolution. Beside the void filling, silicifications comprise also matrix epigenesis, that is replacement of the carbonate by silica with preservation of most of the limestone structures, without development of voids. Nevertheless, the epigenesis of the limestone matrix is restricted to the vicinity of the voids. The silicifications relate to diagenetic processes. The main part of the silica is formed of void deposits and matrix replacement (epigenesis) on the edge of the voids. These void deposits give evidence of the feeding solutions. The regularity of the deposits all around the voids point out to a hydrologic regime characterised by a ground-water our now. Silica originates most probably from alteration of the magnesian clay minerals along the ground-water path. Regarding the low solubility of silica in surficial waters, high flows are needed in order to renew continuously the silica precipitated from solution. This points to a relatively humid climate at time of silicification, and to relief and incised landscapes to bring about these high flows

Role of Speleology in Karst Hydrology and Hydrogeology., 1997,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Bonacci O.
Technology of speleological investigations enables special measurements of features of underground conduits, caves, pits, jamas, shafts and the other solutional sculpturings such as scallops and cave rocky relief. Speleologic investigations can reveal the positions, dimensions and interactions of underground and surface karst features and water flow in the karst and on its surface. Speleologists are capable of investigating the hydraulic conditions under which laminar or turbulent flows occur in conduits and small and narrow karst fractures. From such investigations crucial parameters for hydraulic, hydrologic and hydrogeologic modelling such as dissolution-bedform and hydraulically-transported sediment, can be obtained. For these reasons, the role of speleology in karst hydrology and hydrogeology should (and undoubtedly will) in future be given much more importance. This paper briefly explains the main theoretical aspects and gives some practical examples and experiences from Dinaric and others karst regions.

Holocene development of three isolated carbonate platforms, Belize, central America, 1998,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Gischler E. , Hudson J. H. ,
Locally operating factors such as topography of the reef basement and exposure to waves and currents rather than regionally effective factors such as the post-glacial sea level rise in the western Atlantic explain the different Holocene developments of the three isolated carbonate platforms Glovers Reef, Lighthouse Reef, and Turneffe Islands offshore Belize. A series of NNE-striking tilted fault-blocks at the passive continental margin forms the deep basement of the Belize reefs. Glovers and Lighthouse Reefs are located on the same fault-block, while Turneffe Islands is situated west of Lighthouse Reef on an adjacent fault-block. The three platforms are surrounded by deep water and have surface-breaking reef rims. Significant differences exist between platform interiors. Glovers Reef has only 0.2% of land and an 18 m deep, well-circulated lagoon with over 800 patch reefs. Lighthouse Reef has 3% of land and a well-circulated lagoon area. Patch reefs are aligned along a NNE-striking trend that separates a shallow western (3 m) and a deeper eastern (8 m) lagoon. Turneffe Islands has 22% of land that is mainly red mangrove. Interior lagoons are up to 8 m deep and most have restricted circulation and no patch reefs. Surface sediments are rich in organic matter. In contrast, the northernmost part of Turneffe Islands has no extensive mangrove development and the well-circulated lagoon area has abundant patch reefs. Holocene reef development was investigated by means of 9 rotary core holes that all reached Pleistocene reef limestones, and by radiometric dating of corals. Maximal Holocene reef thickness reaches 11.7 m on Glovers Reef, 7.9 m on Lighthouse Reef, and 3.8 m on Turneffe Islands. Factors that controlled Holocene reef development include the following. (1) Holocene sea level. The margin of Glovers Reef was flooded by the rising Holocene sea ca. 7500 YBP, that of Lighthouse Reef ca. 6500 YBP, and that of Turneffe Islands between 5400 and 4750 YBP. All investigated Holocene reefs belong to the keep-up type, even though the three platforms were flooded successively and, hence, the reefs had to keep pace with different rates of sea level rise. (2) Pre-Holocene topography. Pleistocene elevation and relief are different on the three platforms. This is the consequence of both tectonics and karst. Different elevations caused successive reef initiation and they also resulted in differences in lagoon depths. Variations in Pleistocene topography also explain the different facies distribution patterns on the windward platforms that are located on the same fault-block. On Lighthouse Reef tectonic structures are clearly visible such as the linear patch reef trend that is aligned along a Pleistocene fault. On Glovers Reef only short linear trends of patch reefs can be detected because the Pleistocene tectonic structures are presumably masked by the higher Holocene thickness. The lower Pleistocene elevation on Glovers Reef is probably a consequence of both a southward tectonic tilt, and stronger karstification towards the south related to higher rainfall. (3) Exposure to waves and currents. Glovers Reef, Lighthouse Reef, and the northernmost part of Turneffe Islands receive the maximum wave force as they are open to the Caribbean Sea. Adjacent lagoons are well-circulated and have luxuriant patch reef growth and no extensive mangrove development. By contrast, most of Turneffe Islands is protected from the open Caribbean Sea by Lighthouse Reef to the east and is only exposed to reduced wave forces, allowing extensive mangrove growth in these protected areas. (C) 1998 Elsevier Science B.V

Contribution to knowledge of gypsum karstology, PhD thesis, 1998,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Calaforra Chordi, J. M.

The objective of this study was not to establish a definitive judgement regarding a topic for which very little previous information was available, but rather to open new routes for research into karst by means of a particularized analysis of some of the factors involved in the speleogenesis of gypsiferous materials. The main obstacle to the attainment of this goal has been the scientific community's lack of interest in karst in gypsum, particularly in our country, until the nineteen eighties. To overcome this neglect it was decided, in my opinion quite correctly, to extend the bounds of the study as far as possible, so that the information obtained from the contrast found between the most important worldwide zones of karst in gypsum could be applied to the gypsiferous karst in our country, and in particular, to the most significant, the karst in gypsum of Sorbas.
This is the justification for the numerous references in the text to the gypsiferous karst and cavities in gypsum that are most relevant in Spain (Sorbas, Gobantes, Vallada, Archidona, Estremera, Baena, the Ebro Basin, Estella, Beuda, Borreda, etc.) and also to the best-known gypsiferous karsts worldwide (Podolia, Secchia, Venna del Gesso Romagnolo, Sicily and New Mexico). By means of these comparisons, the initial lack of information has been overcome.
The study is based on three central tenets, which are interrelated and make up the first three chapters of this report. The first consideration was to attempt to characterize the particular typology of gypsiferous karst from the geological (both stratigraphic and structural) point of view. This chapter also provides an introduction to each of the gypsiferous karsts examined. The second chapter is dedicated to the geomorphology of gypsiferous karst, under both superficial and subterranean aspects. It is important to note that the study of a gypsiferous karst from the speleological point of view is something that may seem somewhat unusual; however, this is one of the points of principle of this paper, the attempt to recover the true meaning of a word that has historically been unfairly condemned by a large part of the Spanish scientific community. Thirdly, a detailed study has been made of the hydrochemistry of the most important gypsiferous karsts in our region, together with the presentation of a specific analytical methodology for the treatment of the hydrochemical data applicable to the gypsiferous karst.
Geological characterization of gypsum karst
In the characterization of karst in gypsum, the intention was to cover virtually all the possibilities from the stratigraphic and structural standpoints. Thus, there is a description of widely varying gypsiferous karsts, made up of Triassic to Miocene materials, some with a complex tectonic configuration and others hardly affected by folding. The gypsiferous karsts described, and their most significant geological characteristics, are as follows:
Karst in gypsum at Sorbas (Almeria): composed of Miocene gypsiferous levels with the essential characteristic of very continuous marly interstrata between the layers of gypsum, which decisively affect the speleogenesis of the area. The gypsum layers have an average thickness of about 10 m and, together with the fracturing in the zone, determine the development of the gypsiferous cavities. These are mainly selenitic gypsum - occasionally with a crystal size of over 2 m - and their texture also has a geomorphologic and hydrogeologic influence. This area is little affected by folding and so the tectonic influence of speleogenesis is reduced to the configuration of the fracturing.
The Triassic of Antequera (Malaga): this is, fundamentally, the gypsiferous outcrop at Gobantes-Meliones, originating in the Triassic and located within the well-known "Trias" of Antequera. It is made up of very chaotic gypsiferous materials containing a large quantity of heterometric blocks of varied composition; the formation may be defined as a Miocene olitostromic gypsiferous breccia that is affected by important diapiric phenomena. The presence of hypersoluble salts at depth is significant in the modification of the hydrochemical characteristics of the water and in the speleogenetic development of the karst.
The Triassic of Vallada (Valencia): Triassic materials outcrop in the Vallada area; these mainly correspond to the K5 and K4 formations of the Valencia Group, massive gypsum and gypsiferous clays. The influence of dolomitic intercalations in the sequence is crucial to the speleogenesis of the area and this, together with intense tectonic activity, has led to the development in this sector of the deepest gypsiferous cavity in the world: the "Tunel dels Sumidors". As in the above case, the presence of hypersoluble salts at depth and the varied lithology influence the variations in the hydrodynamics and hydrochemistry of the gypsiferous aquifer.
Other Spanish gypsum karsts: this heading covers a group of gypsiferous areas and cavities of significant interest from the speleogenetic standpoint. They include the area of Estremera (Madrid), with Miocene gypsiferous clays and massive gypsum arranged along a large horizontal layer; this has produced the development of the only gypsiferous cavity in Spain with maze configuration, the Pedro Fernandez cave. The study of this cave has important hydrogeological implications with respect to speleogenesis in gypsum in phreatic conditions. The Baena (Cordoba) sector, in terms of its lithology, is comparable to the "Trias de Antequera". Here, the cavities developed in gypsiferous conglomerates, following structural discontinuities have enabled contact between carbonate and gypsiferous levels, and so we may speak of a mixed karstification: a karst in calcareous rocks and gypsum. The karst of Archidona (Malaga) is similar to that of the Gobantes-Meliones group and is significant because of the geomorphologic evolution of the karst, which is related to the diapiric ascent of the area and the formation of karstic ravines. The karst in the Miocene and Oligocene gypsum of the Ebro Basin (Zaragoza), has been taken as a characteristic example of a gypsiferous karst developed under an alluvial cover, with the corresponding geomorphological implications in the evolution of the surface landforms. In the gypsiferous area of Borreda (Barcelona), the presence of anhydritic levels in the sequence might have influenced the speleogenesis of its cavities. The cavity of La Mosquera, in Beuda (Girona), developed in massive Paleogene gypsum. This is the only Spanish example of a phreatic gypsiferous cavity developed in saccaroid gypsum, which is related to the particular subterranean morphology discovered. Finally, this group includes other Spanish gypsiferous outcrops visited during the preparation of this report, the references to which may be found in the relevant chapters.
Karst in gypsum in Europe and America: In order to complete the study of karst in gypsum, and with the idea of using all the available data on the karstology of gypsiferous materials for comparative studies of data for our country, a complementary activity was to define the most significant geological characteristics of the most important gypsiferous karsts in the world. An outstanding example is the gypsiferous karst at Podolia (Ukraine), developed in microcrystalline Miocene gypsum which has undergone block tectonics related to the collapse of the Precarpatic foredeep. This gypsum provides interesting data on speleogenesis in gypsiferous materials, as its evolution is related to the confining of the only gypsiferous stratum (of 10 to 20 m depth) producing interconnected labyrinthine galleries of over 100 km in length. Another well-known karst in gypsum is the one located at "Venna del Gesso Romagnolo" (Italy), in the Bologna region, with a lithology that is very similar to that which developed at Sorbas, but with the difference that it underwent more intense tectonics with folding and fracturing of the Tertiary sediments of the Po basin. In the same Italian province, in "L'alta Val di Sec-chia", there are outcrops of karstified Triassic materials which correspond to the formation of Burano, composed of gypsum and anhydrite with hypersoluble salts at depth and very notable diapiric phenomena. The study of this area has been used for a comparative analysis - geomorphology and hydrogeochemistry - with the Spanish gypsiferous karsts developed in Triassic levels. The third Italian gypsiferous karst to be considered is the one developed in Sicily, which has extensive Messinian outcrops of microcrystalline and selenitic gypsum as well as a great variety of lithologic types within the gypsiferous sequence, which we term the "gessoso solfifera" sequence. This gypsiferous karst is especially interesting from the geomorphologic standpoint due to the great quantity and variety of present superficial karstic forms. This has also served as a guide for the study of Spanish gypsiferous karsts. Finally, considering the relation between climatology and the development of karstic forms, we have also studied the karst in gypsum in New Mexico, where there is an extensive outcrop of Permian gypsum, both micro and macrocrystalline, situated on a large platform almost unaffected by deformation, and where the conditions of aridity are very similar to those found in the gypsiferous karst of Sorbas.
Geomorphological characterization of gypsum karst
From the geomorphological standpoint, the intention is to give an overview of the great variety of karstic forms developed in gypsum, traditionally considered less important than those developed in carbonate areas. This report shows this is not the case.
The theory of Convergence of Forms has been shown to be an efficient tool for the study of the morphology of karst in gypsum. Here, its principles have been used to provide genetic explanations for various gypsiferous forms derived from carbonate studies, and for the reverse case. In fact, studying a karst in gypsum is like having available a geomorphological laboratory where not only are the processes faster but they are also applicable to the karstology of carbonate rocks.
A large number of minor karstic forms (Karren) have been identified. The most important factors conditioning their formation are the texture of the rock, climatology and the presence of overlying deposits. The first, particularly, is largely responsible for determining the abundance of certain forms with respect to others. Thus, Rillenkarren, Trittkarren and small "kamenitzas" are more frequently found in microcrystalline and sandstone gypsum (for example, karst in gypsum in Sicily (Italy) and Va-llada (Valencia, Spain). Others seem to be more exclusive to selenitic gypsum, such as exfoliation microkarren, or are closely related to the climatology of the area (Spitzkarren develops from the alteration of gypsum in semiarid conditions). Others are related either to the presence of developed soil cover (Rundkarren, using Convergence of Forms), or to their specific situation (candelas and Wallkarren around dolines and sinkholes) or to the microtexture of the gypsum and the orientation of the 010 and 111 crystalline planes and twinning planes for the development of nanokarren.
The tumuli are the most peculiar forms of the Sorbas karst in gypsum, though they have also been identified in other gypsiferous karsts (Bolonia, New Mexico, Vallada, etc.). These are subcircular domes of the most superficial layer of the gypsum. Their formation has been related to processes of precipitation-solution and of capillary movement through the gypsiferous matrix. Their extensive development is largely determined by the climatology of the area and by the structural organization. It is therefore clear that the best examples are found in the karst of Sorbas due to the abrupt changes in temperature and humidity that occur in a semiarid climate, and because of the horizontality of the gypsiferous sequence.
Karst in gypsum and its larger exokarstic forms, apart from being climatically determined, also depend on the structural state and lithological determinants of the area. Thus, it is possible to differentiate between gypsiferous karsts where the lithology, together with erosive breakup, is more important (Sorbas and New Mexico) and others where confining hydraulic conditions persist (Estremera and Podolia). In other cases, tectonics has played a significant modelling role, and there is a clear possibility of an inversion of the relief (Bolonia or Sicily) or of the effect of diapiric processes (Secchia, Vallada, Antequera). The typological diversity of the dolines is obviously also related to these premisses. Another example is the relation existing between carbonate precipitation and gypsum solution, as evidenced in contrasting examples (Bolonia versus Sorbas).
Subterranean karstic forms have been examined from a double perspective: the morphology of the passages and the mineralization within the cavities. With respect to the former, a noteworthy example is the interstratification karst of Sorbas, where subterranean channels have developed during two well-differentiated phases, the phreatic and the vadose. The first was responsible for the formation of the small proto-galleries, currently relicts that are observable as false dome channels in the bottom of the gypsiferous strata. The second, with an erosive character, enabled the breakup of the marly interstrata and the formation of the large galleries found today. Other aspects considered include the speleogenetic influence of the presence of calcareous intercalations in the gypsiferous sequence (Vallada karst), gypsiferous agglomerates (Baena karst), anhydrite (Rotgers karst), suffusion processes (Sorbas karst) and the importance of condensation.
Spelothemes in gypsiferous cavities have been approached with special concern for gypsiferous speleothemes, in particular those which, due to their genetic peculiarity or to the lack of previous knowledge about them, are most significant. Among these are gypsum balls, with phenomena of solution, detritic filling, capillarity and evaporation; gypsum hole stalagmites, where the precipitation-solution of the gypsum controlling the formation of the central orifice is related to the previous deposit of carbonate speleothemes; gypsum trays that mark the levels of maximum evaporation; gypsum dust, determined by abrupt changes in temperature and humidity in areas near the exterior of gypsiferous cavities. All of these are characteristic of, and practically exclusive to, gypsiferous karsts in semiarid ztenes such as Sorbas and New Mexico.
Karst in gypsum has been morphologically classified with reference to the previously-mentioned criteria: the presence and typology of epigean karstic forms, both macro and microform; the typology of hypogean karstic forms (passages) and the type of speleothemes within the cavities (gypsiferous or carbonate). All these variables are clearly influenced by climatology, and so a study of the geomorphology of gypsiferous karst is seen to be an efficient tool for the analysis of the paleoclimatology of an area.
Hydrogeochemical characterization of gypsum karst
The hydrogeochemical characterization of karst in gypsum was approached in two stages. The first one was intended to establish themodels to be applied to the hydrochemistry approach, while the second provided various examples of hydrochemical studies carried out in gypsiferous karsts.
The theoretical framework which has been shown to be most accurate with respect to the formulation of chemical equilibria in water related to gypsiferous karst is the Virial Theory and the Pitzer equations.
For this study, we used a simplification of these equations as far as the second virial coefficient by means of a simple, polynomial variation to obtain the equilibrium state of the water with respect to the gypsum, for an ionic strength value greater than 0.1 m and temperatures of between 0.5 and 40 "C. This was the case of the gypsiferous karsts found to be related to hypersaline water at depth (Vallada, Gobantes-Meliones, Poiano). In the remaining situations, where the ionic strength was below 0.1 m, only the theory of ionic matching was used.
The hydrochemical study of the gypsiferous karst of Gobantes-Meliones (Malaga) led to the hypothesis of the possible influence of hypersaline water on karstification in gypsum. Using theoretical examples of the mixing of water derived both from hypersaline water and from water related only to the gypsiferous karst, it was shown that above a percentage content of 0.1:0.9 of saline and sulphated water, the mixture is subsaturated with respect to gypsum and other minerals. On reaching percentages greater than 0.5:0.5, values of oversaturation are again found. This could mean that the contact between sulphated and hypersaline water is a karstification zone in gypsum at depth.
In the gypsiferous karst at Salinas-Fuente Camacho (Granada), a study has been made of the hydrochemical influence of dolomitic levels in the sequence by means of the analysis of the hydrochemical routes between hydraulically-connected points. The generic case of mass transfer in this gypsiferous aquifer implies a precipitation of calcite which is in-congruent with dolomitic solution, proving that the process of dedolomitization in gypsiferous aquifers with an abundance of dolomitic rocks can be an effective process. In situations of high salinity, with contributions of hypersaline water, the process may be inverted, such as occurs in coastal carbonate aquifers influenced by the fresh-saltwater interface.
The gypsiferous aquifer of Sorbas-Tabernas (Almeria) provides the best case of karstification in gypsum in Spain; the hydrochemical study carried out has been used as an example of karstification in gypsum completely uninfluenced by sodium-chloride facies. It is shown, from the hydrochemical similarities between the different sectors, that the uniformity of the flow from the system main spring (Los Molinos) responds to the delayed hydraulic input through the overlying post-evaporitic materials and to the pelitic intercalations of the gypsiferous sequence. The aquifer is partially semiconfined, a situation which is comparable to the onset of the karstification stage, while the area of the Sorbas karst, strictly speaking, bears no hydriaulic relation to the rest of the system, behaving like a free aquifer intrinsically related to the epikarstic zone. This fact is demonstrated by the hydrochemical differences between the main spring and those related to gypsiferous cavities.
Apart from the general study of the Sorbas-Tabemas aquifer, a study was also made of the hydrochemical-time variations within cavities, and in particular within the Cueva del Agua, where it is possible to observe particular processes affecting karstification in gypsum, such as the precipitation of carbonates on the floor of the cavity which produce, in that area, a greater solution of gypsum (the phenomenon of hyperkarstification). Furthermore, the temporal evolution of the chemistry of the cavity, along 800 m of subterranean flow through its interior, shows the existence of inertial sectors where the variations were less abrupt. Only in the case of particular sectors, related to sporadic hydriaulic contributions or to the proximity to points of access., was a notable seasonal influence detected.
A similar hydrochemical study was carried out in the karst of Vallada (Valencia), along the cavity of the Tunel dels Sumidors. The chemistry here was compared with that of the springs of Brolladors (whose water rapidly infiltrates into the cavity) and Saraella (a saline resurgence of the whole system). Unexpected increases in the ionic content of certain salts (sulphates and chlorides) were detected during periods of increased flow; these were interpreted as the effect of the recharging of the Saraella spring arising from the immediate contribution of rapidly circulating sulfated water coming from the cavity and the subsequent mobilization of interstitial water with an ionic content higher than the characteristic level of the spring.
We present as a hypothesis the idea that, in addition to the hydrogeochemical processes described that can affect the evolution of a gypsiferous karst, the processes of sulphate reduction also influence karstification in gypsum, at least during the earliest stages. Some examples such as the presence of gypsum with abundant organic matter reprecipitated into phreatic channels (Sorbas) or veins of sulphur related to gypsiferous karsts (Podolia, Sicily) lend support to this idea.
Studies of the solution-erosion of gypsum have been performed by physical methods (tablets and M.E.M.) showing that the solution-erosion of gypsum within cavities is minimal (0.03 mm/ year) compared to that existing in the exterior (0.3 mm/year). The speleogenetic effect of condensation within the cavities has also been shown, with solution-erosion rates of 0.005 mm/year to be like the equivalent surface lowering. These data correspond to the karst in gypsum at Sorbas, where, additionally, a study about the time variation of the solution-erosion was carried out. It was found that the process is not continuous but clearly sporadic. During periods of torrential rain, the solution-erosion ranges from a weight loss of 400 mg/cm2/year on the surface of the karst to 75 mg/cm2/year inside the caves, while during the rest of the year the weight loss was barely 1 mg/cm2/year. The physical methods were compared with the results obtained from chemical methods, and it was found that, in general, higher values were obtained with the former (10-20% higher when weighted for the rainfall during the measuring periods). Thus it is reasonable to consider that the erosive process is more marked than was at first assumed.
In total, three cavity tracing experiments were carried out, all with fluoresceine, two of them in Cueva del Agua in Sorbas (during periods of high and low water levels) and the other in Tunel dels Sumidors in Vallada. At the first site, the comparison of the two tracing tests reveals a differential hydrodynamic behaviour of the cavity for the two contrasting situations; periods of high water input and periods of low rainfall. This behaviour is characteristic of well developed karstic aquifers, where the hydrodynamic effect of the circulation of water through small channels or, in this case, through the gypsiferous matrix and interbedded marly layers, seems to be more important under conditions of low hydraulic input than when rainfall is abundant. The two situations tested seem to confirm that the Cueva del Agua system, an epikarstic aquifer, which is representative of karstification in gypsum, has scarce retentive power and so large volumes of precipitation are totally discharged via the spring within a few days. However, the explanation of the small but continuous flow from the base of the cavity requires the inclusion of other factors in the interpretation. In this case, the flow seems to be fairly independent of rainfall and attributable to other processes, in addition to the previously described ones, such as the retentive power of the gypsiferous matrix and the marly interstrata. These might include the high degree of condensation measured over long periods, both on the surface of the karst in gypsum and within the cavities. In the case of the Tunel dels Sumidors, a highly irregular response was found, despite the fact that the coefficient of dispersivity was found to be 0.4. This value is similar to that obtained for the karst in gypsum at Sorbas in response to low water conditions, and so, here too, one might assume the influence of greater than expected flow-retaining processes, between the entry and exit points. Doubtless the karstic system of the Tunel dels Sumidors is more complex than was initially expected and in fact, the irregularity reflected by the fluoresceine concentration curve over time implies the existence of other factors to explain the diversity of the relative maxima obtained. Firstly, the presence of numerous Triassic clay intercalations might delay the flow, in addition to retaining a certain quantity of fluoresceine by ionic exchange. There is also a possibility that the flow is dispersed through a network of small conduits and pores, due to the permeability of the gypsiferous matrix. Finally, we cannot discount the possible existence of a deep-level input which, in this case, would be responsible for the variation in the flow and the chemical composition. This set of suppositions, as a whole, would explain the fact that the response of the spring to tracing is so irregular, even though we cannot achieve a definition of the qualitative influence of each one on the hydrodynamics of the system.
In order to verify some of the above hypotheses, particularly those referring to the process of condensation within cavities, an experiment was designed, consisting of a microtracing test at some points where condensation had been detected within the Cueva del Agua at Sorbas. The test produced a range of condensation flow speed values of 0.2 to 30 cm/hour and shows that, in those sections where the presence of condensation flow is visually apparent, there is a rapid dispersion of the colourant. However, it also shows that at points where there is no apparent condensation the process also occurs, but at a lower rate of efficiency. The importance of condensation within cavities has two aspects; firstly, speleogenetic, with the development of solution forms (cupolas) and deposit forms (capillarity boxwork); and secondly, hydrogeological, as this is the reason why certain processes (strong changes in temperature and humidity, multiple routes of airflow exchange with the exterior) may in themselves constitute a hydraulic contribution, of slight importance, but sufficient to explain a large part of the base flow (0.2 - 0.8 L/s) of a whole cavity system such as the Cueva del Agua in semiarid conditions.
With the intention of completing the analyses carried out in various karsts in gypsum, instruments were installed in the Cueva del Agua at Sorbas to measure, by continuous registration, some important physico-chemical parameters that might provide additional data on the hydro-geologic behaviour of this gypsiferous karst, especially at the level of the epikarstic zone. The parameters of temperature and water conductivity were considered most important, due to their singular behaviour patterns. During the experiment there were two periods of rainfall that modified the chemistry of the cavity, one of 30 mm in two days and another of 200 mm (almost the annual total) in four days. In the second case, which was much more extreme, a very significant increase in water temperature (up to 7 °C during the initial period of high water flow) was detected, while conductivity fell. But suddenly, when the minimum conductivity was reached, the temperature dropped sharply by 6-7 °C to return to the base temperature of the cavity. Subsequently, the temperature again stabilized at about 7 °C above the data recorded during the dry period. This behaviour pattern was not detected when the rainfall was slight. The explanation for this dual behaviour observed is fundamentally based on the quantity of rainfall and on the differences between the exterior air temperature, the temperature of interstitial water and the temperature recorded in the spring during high water flow. When water temperature in the cavity during high water flow is higher than the base temperature recorded in the period immediately before, it means that the interstitial water does not mobilize. However, when at any time the two temperatures coincide, one might suppose that there might have existed a process of mobilization of the water previously resident in the rock, by a piston effect, but in the unsaturated zone. On the other hand, the temporal variations of these parameters during the months following periods of high rainfall have enabled us to detect the existence of distinct periods during the return to normal cavity conditions. By carefully examining the decrease curve of water temperature inside the cavity while conductivity regained its maximum stable value, two periods may be differentiated. The first may be termed the "inertial influence period", when the rainfall occurring removes all signs of natural variation in the cavity. Thus, the daily external influences are not clearly detectable and the curve is downward-sloping and asymptotic with no significant oscillations. In the second period, which ends with the total stabilization of the parameter at the level of the initial conditions, the asymptotic descent is seen to be affected by daily temperature variations. This is termed the "inertial recovery period", during which external variations start to have an effect on the interior of the cavity such that there is a progressive increase in the amplitude of the daily variation in water temperature, air temperature and relative humidity. This behaviour pattern of variation of these parameters during periods of high rainfall, might be extended to all karstic systems, varying only in magnitude and temporal extent.

Results 31 to 45 of 158
You probably didn't submit anything to search for