MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_left.php on line 5
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That field survey is measurements taken in the field [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_right.php on line 7
What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for drift (Keyword) returned 33 results for the whole karstbase:
Showing 31 to 33 of 33
Insights into Cave Architecture and the Role of Bacterial Biofilm, 2013,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943

Caves offer a stable and protected environment from harsh and changing outside conditions. They lend living proof of the presence of minute life forms that delve deep within the earth’s crust where the possibility of life seems impossible. Devoid of all light sources and lacking the most common source of energy supplied through photosynthesis, the mysterious microbial kingdom in caves are consequently dependent upon alternative sources of energy derived from the surrounding atmosphere, minerals and rocks. There are a number of features that can be observed within a cave that may serve as evidence of microbial activity, for example, formation of biofilms comprised of multiple layers of microbial communities held together by protective gel-like polymers which form complex structures. Different bacterial biofilms can develop on the walls of the cave which can be visually distinguished by their colorations. Moreover, the pH generated by the metabolism of bacterial biofilm on the cave environment can lead to precipitation or dissolution of minerals in caves. Caves also offer an excellent scenario for studying biomineralization processes. The findings on the association of bacteria with secondary minerals as mentioned in this review will help to expand the existing knowledge in geomicrobiology and specifically on the influence of microorganisms in the formation of cave deposits. This paper reviews the current state of knowledge of biospeleology of caves and the associated bacterial biofilms. Recommendations for future research are mentioned to encourage a drift from qualitative studies to more experimental studies.


Niphargus: a silicon band-gap sensor temperature logger for high-precision environmental monitoring. , 2015,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943

A temperature logger, named “Niphargus”, was developed at the Geological Survey of Belgium to monitor temperature of local natural processes. It has a sensitivity of the order of a few hundredths of degrees on temperature variability in open air, caves, soils and river environment. The newly developed instrument uses a state-of-the-art band-gap silicon temperature sensor with integrated digital output. This sensor reduces the risk of drift associated with thermistor-based sensing devices, especially in humid environments. The Niphargus is designed to be highly reliable, low-cost and powered by a single lithium cell with up to several years autonomy, depending on the sampling rate and environmental conditions. A batch of Niphargus loggers was also compared to a precision thermistor to assess absolute temperature accuracy. Further characterization came from two field case studies in Belgium: monitoring of a mineralized water stream near the town of Spa and air temperature monitoring inside Han-sur-Lesse cave.


Niphargus: a silicon band-gap sensor temperature logger for high-precision environmental monitoring. , 2015,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943

A temperature logger, named “Niphargus”, was developed at the Geological Survey of Belgium to monitor temperature of local natural processes. It has a sensitivity of the order of a few hundredths of degrees on temperature variability in open air, caves, soils and river environment. The newly developed instrument uses a state-of-the-art band-gap silicon temperature sensor with integrated digital output. This sensor reduces the risk of drift associated with thermistor-based sensing devices, especially in humid environments. The Niphargus is designed to be highly reliable, low-cost and powered by a single lithium cell with up to several years autonomy, depending on the sampling rate and environmental conditions. A batch of Niphargus loggers was also compared to a precision thermistor to assess absolute temperature accuracy. Further characterization came from two field case studies in Belgium: monitoring of a mineralized water stream near the town of Spa and air temperature monitoring inside Han-sur-Lesse cave.


Results 31 to 33 of 33
You probably didn't submit anything to search for