MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology

Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That stereogram is a block diagram or threedimensional diagram [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for representation (Keyword) returned 40 results for the whole karstbase:
Showing 31 to 40 of 40
Effects of dynamically variable saturation and matrix-conduit coupling of flow in karst aquifers, 2011, Reimann T. , Geyer T. , Shoemaker W. B. , Liedl R. , Sauter M.

Well-developed karst aquifers consist of highly conductive conduits and a relatively  low permeability fractured and/or porous rock matrix and therefore behave as a dualhydraulic  system. Groundwater flow within highly permeable strata is rapid and transient  and depends on local flow conditions, i.e., pressurized or nonpressurized flow. The  characterization of karst aquifers is a necessary and challenging task because information  about hydraulic and spatial conduit properties is poorly defined or unknown. To investigate  karst aquifers, hydraulic stresses such as large recharge events can be simulated with hybrid  (coupled discrete continuum) models. Since existing hybrid models are simplifications of  the system dynamics, a new karst model (ModBraC) is presented that accounts for unsteady  and nonuniform discrete flow in variably saturated conduits employing the Saint-Venant  equations. Model performance tests indicate that ModBraC is able to simulate (1) unsteady  and nonuniform flow in variably filled conduits, (2) draining and refilling of conduits with  stable transition between free-surface and pressurized flow and correct storage  representation, (3) water exchange between matrix and variably filled conduits, and (4)  discharge routing through branched and intermeshed conduit networks. Subsequently,  ModBraC is applied to an idealized catchment to investigate the significance of free-surface  flow representation. A parameter study is conducted with two different initial conditions:  (1) pressurized flow and (2) free-surface flow. If free-surface flow prevails, the systems is  characterized by (1) a time lag for signal transmission, (2) a typical spring discharge pattern  representing the transition from pressurized to free-surface flow, and (3) a reduced conduitmatrix  interaction during free-surface flow.

Coupled Thermo-Hydro-Chemical (THC) Modeling of Hypogene Karst Evolution in a Prototype Mountain Hydrologic System, 2011, Chaudhuri A. , Rajaram H. , Viswanathan H. S. , Zyvoloski G.

Hypogene karst systems are believed to develop when water flowing upward against the geothermal gradient dissolves limestone as it cools. We present a comprehensive THC model incorporating time-evolving fluid flow, heat transfer, buoyancy effects, multi-component reactive transport and aperture/permeability change to investigate the origin of hypogene karst systems. Our model incorporates the temperature and pressure dependence of the solubility and dissolution kinetics of calcite. It also allows for rigorous representation of temperature-dependent fluid density and its influence on buoyancy forces at various stages of karstification. The model is applied to investigate karstification over geological time scales in a prototype mountain hydrologic system. In this system, a high water table maintained by mountain recharge, drives flow downward through the country rock and upward via a high-permeability fault/fracture. The pressure boundary conditions are maintained constant in time. The fluid flux through the fracture remains nearly constant even though the fracture aperture and permeability increase by dissolution, largely because the permeability of the country rock is not altered significantly due to slower dissolution rates. However, karstification by fracture dissolution is not impeded even though the fluid flux stays nearly constant. Forced and buoyant convection effects arise due to the increased permeability of the evolving fracture system. Since in reality the aperture varies significantly within the fracture plane, the initial fracture aperture is modeled as a heterogeneous random field. In such a heterogeneous aperture field, the water initially flows at a significant rate mainly through preferential flow paths connecting the relatively large aperture zones. Dissolution is more prominent at early time along these flow paths, and the aperture grows faster within these paths. With time, the aperture within small sub-regions of these preferential flow paths grows to a point where the permeability is large enough for the onset of buoyant convection. As a result, a multitude of buoyant convection cells form that take on a two-dimensional (2D) maze-like appearance, which could represent a 2D analog of the three-dimensional (3D) mazework pattern widely thought to be characteristic of hypogene cave systems. Although computational limitations limited us to 2D, we suggest that similar process interactions in a 3D network of fractures and faults could produce a 3D mazework.

Computational Investigation of Fundamental Mechanisms Contributing to Fracture Dissolution and the Evolution of Hypogene Karst Systems, 2011, Chaudhuri A. , Rajaram H. , Viswanathan H. S. , Zyvoloski G. , Stauffer P. H.

Hypogene karst systems evolve by dissolution resulting from the cooling of water flowing upward against the geothermal gradient in limestone formations. We present a comprehensive coupled-process model of fluid flow, heat transfer, reactive transport and buoyancy effects to investigate the origin of hypogene karst systems by fracture dissolution. Our model incorporates the temperature and pressure dependence of the solubility and dissolution kinetics of calcite. Our formulation inherently incorporates mechanisms such as “mixing corrosion” that have been implicated in the formation of hypogene cave systems. It also allows for rigorous representation of temperature-dependent fluid density and its consequences at various stages of karstification. The model is applied to investigate karstification over geological time scales in a network of faults/fractures that serves as a vertical conduit for upward flow. We considered two different conceptual hydrogeologic models. In the first model, the upward flow is controlled by a constant pressure gradient. In the second model, the flow is induced by topographic effects in a mountainous hydrologic system. During the very early stages of fracture growth, there is a positive feedback between fluid flow rate, heat transfer and dissolution. In this stage the dissolution rate is largely controlled by the retrograde solubility of calcite and aperture growth occurs throughout the fracture. For the first model, there is a period of slow continuous increase in the mass flow rate through the fracture, which is followed by an abrupt rapid increase. We refer to the time when this rapid increase occurs as the maturation time. For the second model of a mountainous hydrologic system, the fluid flux through the fracture remains nearly constant even though the fracture permeability and aperture increase. This is largely because the permeability of the country rock does not increase significantly. While this limits the fluid flux through the system, it does not impede karstification. At later stages, forced convection and buoyant convection effects arise in both models due to the increased permeability of the evolving fracture system. Our results suggest that there is s strong tendency for buoyant convection cells to form under a wide range of conditions. A modified Rayleigh number provides a unified quantitative criterion for the onset of buoyant convection across all cases considered. Once buoyant convection cells are set up, dissolution is sustained in the upward flow portions of the cells, while precipitation occurs in the regions of downward flow. We discuss the implications of this type of flow pattern for the formation of hot springs and mazework caves, both of which are characteristic of hypogene karst environments. We also investigate the sensitivity of karst evolution to various physical and geochemical factors.

The geomorphological map of the Castel de Britti area (Northern Apennines, Italy): an example of how teaching geomorphological mapping in a traditional and practical way, 2012, De Waele Jo, Anfossi Giulia, Campo Bruno, Cavalieri Francesco, Chiarini Veronica, Emanuelli Valeria, Grechi Umberto, Nanni Paolo, Savorelli Flavio

Teaching how to map the geomorphology of an area cannot be done in a satisfying manner in a lecture room only, but requires practical exercises both in the laboratory and in the field. A preliminary study of the existing geological maps, of the geomorphological legends and symbols used in Italy and of the landslide inventory has preceded a detailed four days long field mapping campaign carried out by students in the framework of their Msc. Course on “Geomorphological Mapping” at Bologna University. The Geomorphological Map in scale 1:5,000 produced by some of these students is presented in this paper.

The study area is located in the northern Apennines, a few kilometres East of Bologna, along the Idice Valley (N-Italy). Lithologies are mainly composed of clayey and marly sequences ranging in age from Cretaceous to Plio-Pleistocene, sands and sandstones of Pleistocene age, and Messinian gypsum, these last being the most resistant rocks.

Besides the greater scale used in this map, allowing for a more detailed representation of the mapped features, this map also shows the recent evolution of the landslides in this actively mass wasting area.

The new global lithological map database GLiM: A representation of rock properties at the Earth surface, 2012, Hartmann Jens, Moosdorf Nils

Lithology describes the geochemical, mineralogical, and physical properties of rocks. It plays a key role in many processes at the Earth surface, especially the fluxes of matter to soils, ecosystems, rivers, and oceans. Understanding these processes at the global scale requires a high resolution description of lithology. A new high resolution global lithological map (GLiM) was assembled from existing regional geological maps translated into lithological information with the help of regional literature. The GLiM represents the rock types of the Earth surface with 1,235,400 polygons. The lithological classification consists of three levels. The first level contains 16 lithological classes comparable to previously applied definitions in global lithological maps. The additional two levels contain 12 and 14 subclasses, respectively, which describe more specific rock attributes. According to the GLiM, the Earth is covered by 64% sediments (a third of which are carbonates), 13% metamorphics, 7% plutonics, and 6% volcanics, and 10% are covered by water or ice. The high resolution of the GLiM allows observation of regional lithological distributions which often vary from the global average. The GLiM enables regional analysis of Earth surface processes at global scales. A gridded version of the GLiM is available at the PANGEA Database (

KARSYS: a pragmatic approach to karst hydrogeological system conceptualisation. Assessment of groundwater reserves and resources in Switzerland, 2013, Jeannin P. Y. , Eichenberger U. , Sinreich M. , Vouillamoz J. , Malard A. , Weber E.

An approach is presented for the hydrogeological conceptualisation of karst systems. The KARSYS approach helps hydrogeologists working in karst regions to address in a pragmatic and efficient way the three following questions. (1) Where does the water of a karst spring come from? (2) Through which underground routes does it flow? (3) What are the groundwater reserves and where are they? It is based on a three dimensional model of the carbonate aquifer geometry (3D geological model) coupled to a series of simple fundamental principles of karst hydraulics. This provides, within a limited effort, a consistent hydrogeological conceptual model of karst flow systems within any investigation area. The level of detail can be adjusted according to the targeted degree of confidence. Two examples of its application are presented; the approach was first applied with a low level of detail on a national scale in order to assess the groundwater reserves in karst aquifers in Switzerland, suggesting a groundwater volume of 120 km3. On a regional scale, it was applied with a higher level of detail to some selected karst systems in order to assess their hydropower potential. The KARSYS approach may provide very useful information for water management improvement in karst regions (vulnerability assessment, impact assessment, water supply, flood hazards, landslides, etc.). It leads, in a very cost-effective manner, to a new and highly didactic representation of karst systems as well as to new concepts concerning the delineation of catchment areas in karst regions.


Digital elevation models (DEM) are digital representations of topography that are especially suitable for numerical terrain analysis in earth sciences and engineering. One of the main quantitative uses of DEM is the automatic delineation of flow networks and watersheds in hydrology and geomorphology. In these applications (using both low­resolution and precision DEM) depressions hinder the inference of pathways and a lot of work has been done in designing algorithms that remove them so as to generate depression­free digital elevation models with no interruptions to flow. There are, however, geomorphological environments, such as karst terrains, in which depressions are singular elements, on scales ranging from centimetres to kilo­metres, which are of intrinsic interest. The detection of these depressions is of significant interest in geomorphologic map­ping because the development of large depressions is normal in karst terrains: potholes, blind valleys, dolines, uvalas and poljes. The smallest depressions that can be detected depend on the spatial resolution (pixel size) of the DEM. For example, depressions from centimetres to a few metres, such as some types of karren, cannot be detected if the raster digital eleva­tion model has a spatial resolution greater than, say, 5 m (i.e., square 5m pixel). In this work we describe a method for the au­tomatic detection and delineation of terrain depressions. First, we apply a very efficient algorithm to remove pits from the DEM. The terrain depressions are then obtained by subtract­ing the depression­free DEM from the original DEM. The final product is a digital map of depressions that facilitates the cal culation of morphometric features such as the geometry of the depressions, the mean depth of the depressions, the density of depressions across the study area and the relationship between depressions and other variables such as altitude. The method is illustrated by applying it to data from the Sierra de las Nieves karst massif in the province of Málaga in Southern Spain. This is a carbonate aquifer that is drained by three main springs and in which the depressions play an important role in the recharge of the aquifer. A doline density map, produced from a map of 324 detected dolines/uvalas, identifies three main recharge areas of the three springs. Other morphometric results related to the size and direction of the dolines are also presented. Finally the dolines can be incorporated into a geomorphology map.

Karst water resources in a changing world: Review of hydrological modeling approaches, 2014,

Karst regions represent 7–12% of the Earth’s continental area, and about one quarter of the global population is completely or partially dependent on drinking water from karst aquifers. Climate simulations project a strong increase in temperature and a decrease of precipitation in many karst regions in the world over the next decades. Despite this potentially bleak future, few studies specifically quantify the impact of climate change on karst water resources. This review provides an introduction to karst, its evolution, and its particular hydrological processes. We explore different conceptual models of karst systems and how they can be translated into numerical models of varying complexity and therefore varying data requirements and depths of process representation. We discuss limitations of current karst models and show that at the present state, we face a challenge in terms of data availability and information content of the available data. We conclude by providing new research directions to develop and evaluate better prediction models to address the most challenging problems of karst water resources management, including opportunities for data collection and for karst model applications at so far unprecedented scales

Caractérisation et modélisation hydrodynamique des karsts par réseaux de neurones. Application à l’hydrosystème du Lez , 2014, Virgile, Taver

Improving knowledge of karst hydrodynamics represents a global challenge for water resources because karst aquifers provide approximately 25% of the world population in fresh water. Nevertheless, complexity, anisotropy, heterogeneity, non-linearity and possible non-stationarity of these aquifers make them underexploited objects due to the difficulty to characterize their morphology and hydrodynamics. In this context, the systemic paradigm proposes others methods by studying these hydrosystems through input-output (rainfall-runoff) relations.

The approach proposed in this thesis is to use information from field measurement and from systemic analyses to constrain neural network models. The goal is to make these models interpretable in terms of hydrodynamic processes by making model functioning to be similar to natural system in order to obtain a good representation and extract knowledge from model parameters.

This work covers the association of information available on the hydrosystem with correlation and spectral analyses to develop a temporal multiresolution decomposition of variables and to constrain neural network models. A new method for variable selection, adapted to represent long term hydrodynamics of the system, has been proposed. These constrained models show very good results and allow, through their parameters, to study the temporal contribution of inputs variables to the output.

Modeling nonlinear and non-stationary hydrosystems with neural network has been improved by a novel implementation of data assimilation. More precisely, when non-stationarity is attributed to the catchment, data assimilation is used to modify the model parameters. When the inputs are non-stationary, data assimilation can be used to modify the inputs.

The modification of inputs opens considerable scope to: i) fill gaps or homogenizing time series, ii) estimate effective rainfall.

Finally, these various analyses and modeling methods, mainly developed on the karst hydrosystem Lez, can improve the knowledge of the rainfall-runoff relationship at different time scales. These methodological tools thus offer perspectives of better management of the aquifer in terms of floods and resources. The advantage of these analyses and modeling tools is that they can be applicable to other systems.

The hydrogeology of high-mountain carbonate areas: an example of some Alpine systems in southern Piedmont (Italy), 2015,

The hydrogeological characteristics of some springs supplied by high-mountain carbonate rock aquifers, located in the south of Piedmont, in Italy, are presented in this work. The aquifers have different geological-structural conditions, including both deep and superficial karstification. Their catchment areas are located in a typical Alpine context at a high altitude of about 2000 m. These aquifers are ideal representations of the different hydrogeological situations that can be encountered in the high-altitude carbonate aquifers of the Mediterranean basin. It is first shown how the high-altitude zones present typical situations, in particular related to the climate, which control the infiltration processes to a great extent. Snowfall accumulates on the ground from November to April, often reaching remarkable thicknesses. The snow usually begins to melt in spring and continues to feed the aquifer for several months. This type of recharge is characterized by continuous daily variations caused by the typical thermal excursions. The hourly values are somewhat modest, but snowmelt lasts for a long time, beginning in the lower sectors and ending, after various months, in the higher areas. Abundant rainfall also occurs in the same period, and this contributes further to the aquifer supply. In the summer period, there is very little rainfall, but frequent storms. In autumn, abundant rainfall occurs and there are there fore short but relevant recharge events. It has been shown how the trend of the yearly flow of the high mountain springs is influenced to a great extent by the snowmelt processes and autumn rainfall. It has also been shown, by means of the annual hydrographs of the flow and the electric conductivity of the spring water, how the different examined aquifers are characterized by very different measured value trends, according to the characteristics of the aquifer.


Results 31 to 40 of 40
You probably didn't submit anything to search for