MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_left.php on line 5
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That potentiometric field is as used in karst hydrology, a discontinuous highly irregular surface representing the static ground-water head as indicated by the level to which water rises in a selected piezometer. in some piezometers, the water-level rise will be greatly different from other piezometers (either higher or lower) or may be non-existent all together.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms


Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/template/toolbar_right.php on line 7
What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for strontium (Keyword) returned 41 results for the whole karstbase:
Showing 31 to 41 of 41
Deep groundwater flow and geochemical processes in limestone aquifers: evidence from thermal waters in Derbyshire, England, UK, 2006,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
John Gunn, Simon H. Bottrell, David J. Lowe, Stephen R. H. W. ,

Thermal waters potentially provide information on geochemical processes acting deep within aquifers. New isotopic data on groundwater sulphate, inorganic carbon and strontium in thermal and non-thermal waters of a major limestone aquifer system in Derbyshire, England, UK, are used to constrain sulphate sources and groundwater evolution. Shallow groundwaters gain sulphate from oxidation of sulphide minerals and have relatively 13C-depleted dissolved inorganic carbon (DIC). Thermal waters have relatively high Sr/Ca and more 13C-enriched DIC as a result of increased water–rock interaction. In other respects, the thermal waters define two distinct groups. Thermal waters rising at Buxton have higher Mg, Mn and 87Sr/86Sr and lower Ca and SO4, indicating flow from deep sandstone aquifers via a high permeability pathway in the limestone. By contrast, Matlock-type waters (97% of the thermal flux) have elevated sulphate concentrations derived from interaction with buried evaporites, with no chemical evidence for flow below the limestone. About 5% of the limestone area’s groundwater flows to the Matlock group springs via deep regional flow and the remainder flows via local shallow paths to many non-thermal springs. Gypsum dissolution has produced significant tertiary porosity and tertiary permeability in the carbonate aquifer and this is an essential precursor to the development of karstic drainage.


Strontium isotope characterization and major ion geochemistry of karst water flow, Shentou, northern China, 2006,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Wang Yanxin, Guo Qinghai, Su Chunli, Ma Teng,
SummaryKarst water is the most important source of water supply for Shanxi province, northern China. The Shentou springs are representative of the 19 major karst springs at Shanxi. The total area of the Shentou karst water system is 5316 km2, the Middle Ordovician limestone being its major karst aquifer. In this study, data about the strontium isotope geochemistry and major ion hydrochemistry were analyzed to understand the flow patterns and hydrogeochemical processes of karst water at Shentou. The contour map of TDS value of karst water and that of Sr concentration are similar, showing the general tendency of increase from the northern, western and southern boundary to the discharge area. The average values of 87Sr/86Sr ratios of karst water decrease from recharge (0.7107) to discharge area (0.7102), evolving towards those of limestone hostrocks. Comparison of 87Sr/86Sr ratios with Sr content suggests that isotopic compositions of some karst water samples from the recharge and flow through area should be the result of interaction between aquifer limestone matrix and strontium-poor recharge waters of meteoric origin. However, for samples from the discharge area that are plotted above the mixing line, mixing with groundwater in the Quaternary aquifers with high 87Sr/86Sr ratios may be another factor controlling Sr isotope chemistry. Two major groundwater flow paths were discerned from hydrogeological and geochemical data. Along both flow paths, the 87Sr/86Sr ratios of karst water show a general tendency of decrease. Geochemical modeling of the major ion geochemistry of karst water using PHREEQC also indicates that the chemistry of springs should be affected by the incorporation of groundwater in Quaternary aquifer. The effect of the mixing action on the spring hydrochemistry in flow path 1 is more remarkable than that in flow path 2, according to different mixing ratios in both paths (30% in flow path 1 and 5% in flow path 2)

Growth, Demise, and Dolomitization of Miocene Carbonate Platforms on the Marion Plateau, Offshore NE Australia, 2006,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Ehrenberg Sn, Mcarthur Jm, Thirlwall Mf,
Strontium-isotope stratigraphy has been used to examine the timing of depositional events and dolomitization in two Miocene carbonate platforms cored by Ocean Drilling Program (ODP) Leg 194, just seaward of the Great Barrier Reef. The results provide firm constraints for correlating surfaces and depositional stages between the two platforms and thereby relating seismic sequences previously defined in the off-platform sediments to the lithostratigraphic units described from cores in the seismically transparent platform-top sites. Oyster-bearing beds at the base of both platform successions yield early Oligocene ages (29-31 Ma), thus dating initial transgression of the Marion Plateau's volcanic basement. There followed a period of slow accumulation of shallow-water grainstones rich in quartz and phosphate grains in late Oligocene time (29-23 Ma; seismic Megasequence A). The main growth of the carbonate platforms took place in early to late Miocene time (23-7 Ma), comprising five depositional sequences. The first four of these (seismic Megasequence B) are common to both platforms and terminated with a possible karst surface at 10.7 Ma. Different sedimentologic expression of this megasequence in the two platforms reflects contrasting progradational versus aggradational geometries in the locations studied. The final growth stage (seismic Megasequence C) occurred only in the southern platform and terminated at 6.9 Ma. Both platform-demise events (10.7 and 6.9 Ma) approximately coincide with falls in global sea level combined with longer-term trends of decreasing water temperature. Sr-isotope ages of dolostones increase with depositional age, and older dolostones in the southern platform have more coarsely crystalline and fabric-destructive textures than overlying younger dolostones. These relationships are consistent with dolomitization by normal seawater shortly after deposition and overprinting of multiple times of dolomite recrystallization and cementation in the deeper strata

The co-evolution of Black Sea level and composition through the last deglaciation and its paleoclimatic significance, 2006,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Major Candace O. , Goldstein Steven L. , Ryan William B. F. , Lericolais Gilles, Piotrowski Alexander M. , Hajdas Irka,
The Black Sea was an inland lake during the last ice age and its sediments are an excellent potential source of information on Eurasian climate change, showing linkages between regionally and globally recognized millennial-scale climate events of the last deglaciation. Here, we detail changes from the last glacial maximum (LGM) through the transition to an anoxic marginal sea using isotopic (strontium and oxygen) and trace element (Sr/Ca) ratios in carbonate shells, which record changing input sources and hydrologic conditions in the basin and surrounding region. Sr isotope records show two prominent peaks between ~18 and 16 ka BP cal, reflecting anomalous sedimentation associated with meltwater from disintegrating Eurasian ice sheets that brought Black Sea level to its spill point. Following a sharp drop in Sr isotope ratios back toward glacial values, two stages of inorganic calcite precipitation accompanied increasing oxygen isotope ratios and steady Sr isotope ratios. These calcite peaks are separated by an interval in which the geochemical proxies trend back toward glacial values. The observed changes reflect negative water balance and lake level decline during relatively warm periods (Bolling-Allerod and Preboreal) and increasing river input/less evaporation, resulting in higher lake levels, during the intervening cold period (the Younger Dryas). A final shift to marine values in Sr and oxygen isotope ratios at 9.4 ka BP cal corresponds to connection with the global ocean, and marks the onset of sedimentation on the Black Sea continental shelf. This date for the marine incursion is earlier than previously suggested based on the appearance of euryhaline fauna and the onset of sapropel formation in the deep basin

Tectonic-hydrothermal brecciation associated with calcite precipitation and permeability destruction in Mississippian carbonate reservoirs, Montana and Wyoming , 2006,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Katz D. A. , Eberli G. P. , Swart P. K. , Smith Jr. L. B.

The Mississippian Madison Formation contains abundant fracture zones and breccias that are hydrothermal in origin based on their morphology, distribution, and geochemical signature. The hydrothermal activity is related to crustal shortening during the Laramide orogeny. Brecciation is accompanied by dedolomitization, late-stage calcite precipitation, and porosity occlusion, especially in outcrop dolomites. The tectonic-hydrothermal late-stage calcite reduces permeability in outcrops and, potentially, high-quality subsurface reservoir rocks of the subsurface Madison Formation, Bighorn Basin. The reduction of permeability and porosity is increased along the margins of the Bighorn Basin but not predictable at outcrop scale. The destruction of porosity and permeability by hydrothermal activity in the Madison Formation is unique in comparison to studies that document enhanced porosity and permeability and invoke hydrothermal dolomitization models. Hydrothermal breccias from the Owl Creek thrust sheet are classified into four categories based on fracture density, calcite volume, and clast orientation. Shattered breccias dominate the leading edge of the tip of the Owl Creek thrust sheet in the eastern Owl Creek Mountains, where tectonic deformation is greatest, whereas fracture, mosaic, and chaotic breccias occur throughout the Bighorn Basin. The breccias are healed by calcite cements with d18O values ranging between _26.5 and _15.1xPeedee belemnite (PDB), indicating that the cements were derived from isotopically depleted fluids with elevated temperatures. In the chaotic and mosaic breccia types, large rotated and angular clasts of the host rock float in the matrix of coarse and nonzoned late-stage calcite. This appearance, combined with similar d18O values across even large calcite veins, indicates that the calcite precipitated rapidly after brecciation. Values for d13C(_5–12xPDB) from the frontal part of the Owl Creek thrust sheet indicate equilibrium between methane and CO2-bearing fluids at about 180jC. Fluid inclusions from the eastern basin margin show that these cements are in equilibrium with fluids having minimum temperatures between 120 and 140jC and formed from relatively low-salinity fluids, less than 5 wt.% NaCl. Strontium isotope ratios of these hydrothermal fluids are more radiogenic than proposed values for Mississippian seawater, suggesting that the fluids mixed with felsic-rich basement before migrating vertically into the Madison Formation. We envisage that the tectonic-hydrothermal late-stage calcitecemented breccias and fractures originated from undersaturated meteoric ground waters that migrated into the burial environment while dissolving and incorporating Ca2+ and CO3 2_ and radiogenic Sr from the dissolution of the surrounding carbonates and the felsic basement, respectively. In the burial environment, these fluids were heated and mixed with hypersaline brines from deeply buried parts of the basement. Expulsion of these fluids along basementrooted thrust faults into the overlying strata, including the Madison Formation, occurred most likely during shortening episodes of the Laramide orogeny by earthquake-induced rupturing of the host rock. The fluids were injected forcefully and in an explosive manner into the Madison Formation, causing brecciation and fracturing of the host rock, whereas the subsequent and sudden decrease in the partial pressure of CO2 caused the rapid precipitation of calcite cements. The explosive nature of hydrothermal fluid migration ultimately produces heterogeneities in reservoir-quality carbonates. In general, flow units in the Madison Formation are related to sequence boundaries, which create vertical subdivisions in the porous dolomite. The late-stage calcite cement surrounds hydrothermal breccia clasts and invades the dolomite, reducing porosity and permeability of the reservoir-quality rock. As a consequence, horizontal flow barriers and compartments are established that are locally unpredictable in their location and extent and regionally predictable along the margins of the Bighorn Basin. 


Ferruginous thermal spring complexes, northwest Tasmania: Evidence that far-field stresses acting on a fracture mesh can open and maintain vertical flow in carbonate terrains, 2011,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Davidson G. J. , Bavea M. , Harris K.

Far-field stress changes in the southern Australian plate since 5 Ma have produced significant areas of uplift and seismicity. In northwest Tasmania, there is evidence that this stress reorientation to maximum horizontal NW-SE stress has influenced meteoric-derived thermal (15-20°C) discharge patterns of confined karstic aquifers, by placing pre-existing NW-trending faults/fractures into a dilated state or a critically stressed state. Previous studies have shown that spring discharge has operated continuously for at least 65,000 years, and has transported large volumes of solutes to the surface to be deposited as mounds of calcite-goethite-silica up to 7 m high. The thermal spring chemistry at one site, Mella, is consistent with descent to at least 1.2-1. 5 km, although the hinterland within 50 km is less than 500 m elevation. Thermal spring chemistry is consistent with most of the deep water-rock interaction occurring in low-strontium Smithton Dolomite. While some of this water is discharged at springs, some instead intersects shallow zones of NE-fracture-controlled rock (2 ? 4 km in area) with karstic permeability where, although confined and subject to a NE-directed hydraulic gradient, it circulates and cools to ambient temperature, with only minor mixing with other groundwaters


Ferruginous thermal spring complexes, northwest Tasmania: evidence that far-field stresses acting on a fracture mesh can open and maintain vertical flow in carbonate terrains, 2011,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Davidson Garry J. , Bavea Michael, Harris Kathryn

Far-field stress changes in the southern Australian plate since 5 Ma have produced significant areas of uplift and seismicity. In northwest Tasmania, there is evidence that this stress reorientation to maximum horizontal NW–SE stress has influenced meteoricderived thermal (15–20°C) discharge patterns of confined karstic aquifers, by placing pre-existing NWtrending faults/fractures into a dilated state or a critically stressed state. Previous studies have shown that spring discharge has operated continuously for at least 65,000 years, and has transported large volumes of solutes to the surface to be deposited as mounds of calcite-goethite-silica up to 7 m high. The thermal spring chemistry at one site, Mella, is consistent with descent to at least 1.2–1.5 km, although the hinterland within 50 km is less than 500 m elevation. Thermal spring chemistry is consistent with most of the deep water–rock interaction occurring in low-strontium Smithton Dolomite. While some of this water is discharged at springs, some instead intersects shallow zones of NE-fracture-controlled rock (2×4 km in area) with karstic permeability where, although confined and subject to a NE-directed hydraulic gradient, it circulates and cools to ambient temperature, with only minor mixing with other groundwaters. 


Spent carbide waste retains toxicity long term after disposal in caves and mines , 2012,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Semikolennykh Andrew A. , Rahleeva Anna A. , Poputnikova Tatjana B.
We studied the environmental impact of wastes derived from calcium carbide, which is widely used for generating acetylene in industry and speleology. It was shown that spent carbide is toxic for biota and harmful to cave ecosystems and the surrounding environment. The toxic components of spent carbide waste were found to include calcium hydroxide, strontium and polycyclic aromatic hydrocarbons. The 50% lethal doses (LD 50%) of fresh spent carbide waste were calculated as 0.28-0.32 g/l in biotests with daphnia, infusoria, and fishes. The toxicity of spent carbide declined only slowly over time, with toxicity still present in 13-year-old samples. Spent carbide should be disposed of with great care to ensure that it cannot be disseminated into natural water systems. Spent carbide deactivation could be provided within isolated bowls filled with water (micro sediment bowls) or within water-proof storage containers, and complete recycling could be achieved through the addition of deactivated waste to solid building materials.

Source assessment of deposited particles in a Slovenian show cave (Postojnska jama): evidence of long-lasting anthropogenic impact, 2013,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Muri G. , Jovič, Ić, A. , Mihevc A.

Postojnska jama (Postojna Cave) is one of the most famous karst caves in the world and has been a well-known tourist attraction for nearly 200 years. It is particularly famous for its unique double-track railway. Eight heavy metals – aluminium (Al), chromium (Cr), copper (Cu), iron (Fe), lead (Pb), manganese (Mn), strontium (Sr), and zinc (Zn) – were determined in dust deposits by ICP-MS in order to assess sources of deposited particles on the cave walls. The samples were collected along the main passage in the cave, at different horizontal and vertical levels, in order to test horizontal homogeneity and study vertical distribution of the particles. It seems that the railway is an important anthropogenic source of particles, reflected in increased concentrations of Cu, Pb, and Zn, as well as of Fe and Mn in dust deposits at individual sampling sites. The maximum concentrations of Cu (217 μg g-1), Pb (4,940 μg g-1), and Zn (1,060 μg g-1) considerably exceeded their natural abundance and were explained by anthropogenic impact. The three heavy metals are markers for vehicles, engine oil and brake wear. On the other hand, mixed sources could prevail for Fe and Mn. The maximum concentrations of Fe (85,900 μg g-1) and Mn (682 μg g-1) in dust deposits were similar to the concentrations determined in fragments of the railway tracks (97,100 μg g-1 for Fe and 821 μg g-1 for Mn) and were explained by track wear and/or corrosion. In most other parts of the cave, Fe and Mn concentrations were, however, below the concentration of their natural abundance. Al, Sr, and Cr seem to be predominantly of natural origin. They generally exhibited concentrations lower than their natural abundance.


STRONTIUM ISOTOPE RATIOS (87SR/86SR) IN GYPSUM SPELEOTHEMS FROM THE NAICA MINE CAVES (CHIHUAHUA, MEXICO): GENETIC IMPLICATIONS, 2013,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943
Gzquez Fernando, Calaforra Jos Maria, Garcacasco Antonio, Sanna Laura, Forti Paolo

The 87Sr/86Sr ratio of several gypsum speleothems from the caves of the Naica Mine (Chihuahua, Mexico) has been determined in order to evaluate the origin of the saline solution from which they precipitated. The 87Sr/86Sr ratios of the huge selenite crystals from the Cristales Cave (-290 m Level) and of the gypsum core of the “espadas” speleothems from the Espadas Cave (-120 m Level) are 0.707337 and 0.708343, respectively. These values are slightly higher than that of the carbonate host rock (0.7072) as well as that of the Tertiary felsic dikes emplaced in the carbonate sequence (0.7080). They are also lower than those expected for crystallization from seepage water solutions (>0.7090). Therefore, the 87Sr/86Sr values determined for the speleothems at Naica suggest that gypsum in these caves precipitated from a mixture of infiltration water and thermal water. The 87Sr/86Sr ratio of gypsum speleothems is regarded as a useful indicator to infer the rela- tive contribution of meteoric deep thermal water solutions during the genesis of the Naica’s gypsum speleothems.


Depth and timing of calcite spar and “spar cave” genesis: Implications for landscape evolution studies, 2015,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/speleogenesis.info/include/functions1.php on line 943

Calcite spar (crystals >1 cm in diameter) are common in limestone and dolostone terrains. In the Guadalupe Mountains, New Mexico and west Texas, calcite spar is abundant and lines small geode-like caves. Determining the depth and timing of formation of these large scalenohedral calcite crystals is critical in linking the growth of spar with landscape evolution. In this study, we show that large euhedral calcite crystals precipitate deep in the phreatic zone (400–800 m) in these small geode-like caves (spar caves), and we propose both are the result of properties of supercritical CO2 at that depth. U-Pb dating of spar crystals shows that they formed primarily between 36 and 28 Ma. The 87Sr/86Sr values of the euhedral calcite spar show that the spar has a signifi cantly higher 87Sr/86Sr (0.710–0.716) than the host Permian limestone (0.706–0.709). This indicates the spar formed from waters that are mixed with, or formed entirely from, a source other than the surrounding bedrock aquifer, and this is consistent with hypogene speleogenesis at signifi cant depth. In addition, we conducted highly precise measurements of the variation in nonradiogenic isotopes of strontium, 88Sr/86Sr, expressed as 88Sr, the variation of which has previously been shown to depend on temperature of precipitation. Our preliminary 88Sr results from the spar calcite are consistent with formation at 50–70 °C. Our fi rst U-Pb results show that the spar was precipitated during the beginning of Basin and Range tectonism in a late Eocene to early Oligocene episode, which was coeval with two major magmatic periods at 36–33 Ma and 32–28 Ma. A novel speleogenetic process that includes both the dissolution of the spar caves and precipitation of the spar by the same speleogenetic event is proposed and supports the formation of the spar at 400–800 m depth, where the transition from supercritical to subcritical CO2 drives both dissolution of limestone during the main speleogenetic event and precipitation of calcite at the terminal phase of speleogenesis. We suggest that CO2 is derived from contemporaneous igneous activity. This proposed model suggests that calcite spar can be used for reconstruction of landscape evolution


Results 31 to 41 of 41
You probably didn't submit anything to search for